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ON UNIVERSALITY OF DEEP EQUIVARIANT NETWORKS

Marco Pacini∗ Mircea Petrache† Bruno Lepri‡ Shubhendu Trivedi§ Robin Walters ¶

ABSTRACT

Universality results for equivariant neural networks remain rare. Those that do exist
typically hold only in restrictive settings: either they rely on regular or higher-order
tensor representations, leading to impractically high-dimensional hidden spaces, or
they target specialized architectures, often confined to the invariant setting. This
work develops a more general account. For invariant networks, we establish a
universality theorem under separation constraints, showing that the addition of a
fully connected readout layer secures approximation within the class of separation-
constrained continuous functions. For equivariant networks, where results are even
scarcer, we demonstrate that standard separability notions are inadequate and intro-
duce the sharper criterion of entry-wise separability. We show that with sufficient
depth or with the addition of appropriate readout layers, equivariant networks attain
universality within the entry-wise separable regime. Together with prior results
showing the failure of universality for shallow models, our findings identify depth
and readout layers as a decisive mechanism for universality, additionally offering a
unified perspective that subsumes and extends earlier specialized results.

1 INTRODUCTION

Symmetry has emerged as a key organizing principle in deep learning. Equivariant neural networks
encode symmetry by ensuring that transformations of the input are mirrored by corresponding
transformations of the output. This inductive bias has proven successful in applications ranging from
vision and molecular modeling to representation learning on graphs and manifolds (Cohen & Welling,
2016; Kondor & Trivedi, 2018; Bronstein et al., 2021).

An important concern, however, is whether the introduced inductive biases may impose additional
undesired constraints beyond symmetry. In this direction, the majority of work focuses on the study
of expressivity, a broad notion that intuitively reflects the capacity of a family of models to represent
or approximate arbitrarily complex target functions. This notion admits different formalizations,
but two main approaches are currently investigated in the literature. The first directly tackles
universality, understood here as the problem of approximating all symmetry-compatible target
functions (Ravanbakhsh, 2020; Keriven & Peyré, 2019; Maron et al., 2019b; Sonoda et al., 2022),
which, however, often requires models with impractically large intermediate representations. The
second approach concerns the ability of models to distinguish input pairs, their separation power,
an ability that also constrains the functions they can approximate. Separation has been extensively
studied in the graph learning community through the lens of the Weisfeiler–Leman test (Morris et al.,
2019; Maron et al., 2019a), and more recently in a general equivariant setting (Joshi et al., 2023;
Pacini et al., 2024b). In particular, Chen et al. (2019) and Joshi et al. (2023) present initial approaches
to universality that explicitly account for separation constraints. They establish universality results
up to Weisfeiler–Leman and orbit separation, respectively, thereby furnishing the first cases of
separation-constrained universality.

However, Pacini et al. (2025) suggest a more nuanced landscape for the interaction between separation
and universality. For instance, they present examples of invariant shallow architectures with the
same separation power but different approximation power, showing that although separation is a
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necessary condition for approximation, it may fail to be a sufficient one. Nevertheless, Zaheer
et al. (2017), Qi et al. (2017), and Segol & Lipman (2020) show that adding fully connected
readout layers or increasing the depth of this limited class of architectures transforms them into
universal models up to separation. This suggests that depth and readout layers may play a crucial
role in achieving separation-constrained universality and, more generally, in efficiently enhancing
approximation power. In this paper, we shed light on this phenomenon by investigating the role
of depth in separation-constrained universality, both in the invariant and equivariant regimes, and
offer a unified framework that goes beyond earlier architecture-specific results. Our first result is
a separation-constrained universality theorem for invariant networks, showing that models with
fully connected readouts can approximate every continuous function consistent with their separation
relation (Section 4). We then turn to the equivariant setting, where a simple example shows that
standard separability is too coarse to characterize universality. To address this, we introduce the
notion of entry-wise separability (Section 5.1). Intuitively, instead of considering the separation
relation of the entire function, we examine all the separation relations of its projections onto individual
output coordinates simultaneously. With this notion in place, we prove two entry-wise separation-
constrained universality theorems. These results establish that deep equivariant networks achieve
universality either when depth is sufficient to stabilize separation or when specific output layers act, in
the equivariant setting, as surrogates of fully connected readouts in the invariant case (Section 5.2). In
summary, our results identify depth and readouts as key factors for universality across broad classes
of invariant and equivariant architectures. They clarify the role of separation in approximation and
subsume earlier results restricted to shallow or architecture-specific settings.

We summarize our main contributions below:

• We establish a separation-constrained universality theorem for invariant networks (Theo-
rem 1), showing that the addition of a fully connected readout guarantees approximation
within the separation-constrained class.

• We introduce the concept of entry-wise separability and demonstrate, via Example 3, that
standard separability fails to capture the universality class of equivariant networks.

• Building on this refinement, we prove two entry-wise separation-constrained universality
theorems, showing that equivariant networks achieve universality either once entry-wise
separation relations stabilize with depth (Theorem 2), or when equipped with specific
readout layers (Theorem 3).

2 RELATED WORK

Equivariant architectures have emerged as a principled framework to incorporate symmetry into ma-
chine learning (Cohen & Welling, 2016; Kondor & Trivedi, 2018; Bronstein et al., 2021). Beyond con-
volution, a variety of techniques have been developed to enforce equivariance in over-parameterized
or hierarchical representation-learning mechanisms, including approximate equivariance (Finzi et al.,
2021; Petrache & Trivedi, 2023), tensor- and polynomial methods (Thomas et al., 2018), and hybrid
polynomial models (Dym & Gortler, 2022). These approaches have been extended to different data
structures, such as point clouds (Fuchs et al., 2020), graphs (Victor Garcia Satorras et al., 2021),
and simplicial complexes (Battiloro et al., 2025). Thanks to this versatility, these models were able
to adapt to diverse symmetry-sensitive domains, including high-energy physics (Bogatskiy et al.,
2020), structural biology and drug discovery (Jumper et al., 2021), robotics (Huang et al., 2023), and
medical imaging (Lafarge et al., 2021).

However, due to this heterogeneity of the landscape, a principled understanding of how such biases
affect models remains fragmented and far from complete. Most work focuses on expressivity, the
capacity of a model class to represent arbitrarily complex target functions. Ravanbakhsh (2020)
and Sonoda et al. (2022) show that shallow architectures with regular hidden representations can
approximate any equivariant map. However, these results require hidden spaces whose dimension
scales with group size, making them impractical. Similarly, Maron et al. (2019b) establish universality
for invariant networks with high-order tensor representations, though such constructions remain far
from practical use. Among architectures used in practice, graph neural networks occupy a prominent
role in the geometric deep learning literature. The study of their expressivity has been carried out
primarily through the lenses of separation, via the Weisfeiler-Leman test, which enables fine-grained
understanding of the model’s separation capabilities. This focus is justified by the result of Chen et al.
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(2019), who establish universality up to Weisfeiler–Leman separation. Building on this, Joshi et al.
(2023) extended the result to geometric graph neural networks, establishing universality up to orbit
separation. While these universality results remained confined to the invariant setting, the separation
power of equivariant networks is now well characterized (Geerts, 2020; Geerts & Reutter, 2022;
Pacini et al., 2024b), and depth plays a central role. However, Pacini et al. (2025) recently showed that
depth and additional readout layers play a more subtle role in approximation relative to separation,
demonstrating that they can change the class of functions that are approximable without altering
separation. This stands in stark contrast to the theory of classical neural networks, where depth is
known to improve parameter efficiency but not the class of approximable functions (Telgarsky, 2016;
Yarotsky, 2017; 2018).

We extend this literature in two ways. First, we prove that adding a fully connected readout layer is
sufficient to achieve separation-constrained universality for invariant neural networks. Second, we
introduce and analyze entry-wise separability, showing that it provides the appropriate refinement for
extending separation-constrained universality to equivariant networks. We present these results in a
mathematical framework that is general enough to encompass prior settings while precisely capturing
the underlying phenomena.

3 PRELIMINARIES

3.1 GROUPS AND EQUIVARIANCE

We study functions that behave consistently under prescribed transformations. Among them, some
are naturally formalized by the algebraic structure of a group: sets of transformations closed under
composition and containing inverses and an identity. While group theory provides the natural
framework for reasoning about symmetry, in the context of neural networks it is convenient to
reformulate these ideas in linear-algebraic terms. This is achieved through representation theory,
which encodes abstract group elements as matrix actions on vector spaces (Serre, 1977).

Permutation representations play a central role in this work. They arise when a group G acts on a
finite set X , where the action is given by an identification of G as a subset of permutations of X .
Let RX denote the space of real-valued functions on X , and for each x ∈ X define the indicator
ex ∈ RX by ex(x) = 1 and ex(y) = 0 for y ̸= x. The collection {ex}x∈X forms a canonical
basis of RX . The associated permutation representation is the linear action on V = RX given by
g(ex) = egx, where gx is the result of g acting on x for g ∈ G, x ∈ X

If V and W are permutation representations of G, a map ϕ : V →W is called G-equivariant when
ϕ(gv) = gϕ(v) for all g ∈ G, v ∈ V . We denote by Hom(V,W ) the space of linear maps and by
HomG(V,W ) the subspace of G-equivariant linear maps. Similarly, Aff(V,W ) denotes the space of
affine maps and AffG(V,W ) ⊆ Aff(V,W ) the subset of G-equivariant affine maps. All these spaces
are real vector spaces under pointwise addition and scalar multiplication.

3.2 LAYER SPACES, NEURAL SPACES & EQUIVARIANT NEURAL NETWORKS

We now describe equivariant neural networks, which are model classes with group equivariant layers.
Throughout, we restrict attention to networks equivariant under the action of a finite group, with
layers given by permutation representations and equipped with arbitrary point-wise continuous
activations. We begin by introducing the notion of a layer space, namely a space of affine maps
subject to additional constraints—such as equivariance requirements or restrictions on the set of
permissible filters—which will serve as the fundamental building block of the neural architectures
under consideration.
Definition 1 (Layer Spaces). Let G be a finite group acting on a finite set X , let RX be the permuta-
tion representation associated with this action, and let V be another permutation representation of G.
A layer space is a subset M ⊆ AffG(V,RX). In this work, we focus on spaces of the form

M =

{
v 7→

k∑
i=1

xi ϕ
i(v) +

ℓ∑
j=1

yj 1Xj

∣∣∣ x1, . . . , xk, y1, . . . , yℓ ∈ R

}
, (1)

where ϕ1, . . . , ϕk ∈ HomG(V,RX), the sets X1, . . . , Xℓ denote all the orbits of X under the
G-action, and 1Xj :=

∑
x∈Xj

ex for j = 1, . . . , ℓ, with {ex}x∈X the canonical basis of RX .
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Example 1. We give some examples of layer spaces, L, I , C, and P , which will be used throughout
the manuscript as running references in our analysis of the universality phenomena. These layer
spaces correspond to widely used architectures in geometric deep learning and illustrate how standard
models naturally fit into the general form (1).

(i) Linear Layer: Linear layers in standard neural networks are given by elements of
Aff(Rn,Rm). For the action of any group, we can define the set of affine linear maps
between trivial representations L := Aff(R,R), whose relevance will become clearer later,
for instance, in relation to (3).

(ii) Invariant Layer: Let G be a finite group acting on a finite set X , and let RX denote the
associated permutation representation. We denote by R the trivial real representation of G.
The space of G-invariant affine maps from RX to R is denoted by I := AffG(RX ,R). If
X = X1 ⊔ · · · ⊔Xℓ is the orbit decomposition of X , then we have the characterization

I :=
{
v 7→

ℓ∑
i=1

xi1
⊤
Xi

· v + y | x1, . . . , xℓ, y ∈ R
}
.

(iii) Convolutional Layer: Standard convolutional layers correspond to maps equivariant with
respect to the cyclic group G = Zn × Zn, acting by the standard cyclic permutations
on the product X = [n] × [n], and can be naturally formulated within the framework
of permutation representations. Here we consider the generalization to general finite G
acting on finite X , and focus on convolutional layers with filter width 1 between general
permutation representations RX . These can be written in the form of (1) as follows.

C :=
{
v 7→ x id ·v +

ℓ∑
i=1

yi1Xi

∣∣∣ x, y1, . . . , yℓ ∈ R
}
. (2)

Note that here C ⊆ AffG(RX ,RX) for any action of G on X , where X = X1 ⊔ · · · ⊔Xℓ

denotes the orbit decomposition of X . The same setting can be extended to wider filters, but
for ease of exposition, will not be used in this paper.

(iv) PointNet Layer: Sum-pooling PointNet layers (Qi et al., 2017) are designed to process
unordered collections, such as point clouds, by enforcing permutation equivariance. In the
simplest case, an input configuration of n real elements is represented as a vector a ∈ Rn,
where we identify RX = R[n] ∼= Rn. This definition extends analogously to the general
case with multi-dimensional features. Equivariant PointNet layers act on such inputs using
maps in the space AffSn

(Rn,Rn). Zaheer et al. (2017) characterized this space as

P :=
{
v 7→ (x1 id+x211

⊤) · v + y1
∣∣∣ x1, x2, y ∈ R

}
,

where 1 = 1[n] = [1, . . . , 1]⊤.

We restrict our study to point-wise activations, also referred to in the literature as component-wise or
entry-wise activations.
Definition 2 (Point-wise Activation). Let σ : R → R be a nonlinear activation. Given a permutation
representation RX of a group G, we define the associated point-wise activation σ̃ : RX → RX

by σ̃
(∑

x∈X αxex
)
=
∑

x∈X σ(αx)ex. Wherever the usage is unambiguous from context, we will
denote both σ and σ̃ by the same symbol.

We now state the definition of a neural network and of the functional space of a fixed neural
architecture, which we call a neural space, also referred to in the literature as a neuromanifold (Calin,
2020).
Definition 3 (Neural Networks and Neural Spaces). Let G be a group and V0, . . . , Vd be permutation
representations of G. For each i = 1, . . . , d, let Mi be a layer space in AffG(Vi−1, Vi). For d ≥ 2,
the neural space associated with layers M1, . . . ,Md and activation σ is defined recursively by

Nσ(M1, . . . ,Md) =
{
ϕd ◦ σ̃ ◦ · · · ◦ σ̃ ◦ ϕ1

∣∣ ϕi ∈Mi for each i = 1, . . . , d
}
.

Any ηd ∈ Nσ(M1, . . . ,Md) is called a neural network with layers in M1, . . . ,Md and activation σ.
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3.3 UNIVERSALITY CLASSES AND SEPARATION

We aim to characterize the class of continuous functions approximable by neural networks with fixed
architecture. We generalize the notion of universality class introduced by Pacini et al. (2025) for shal-
low networks, to networks of arbitrary depth. Before giving a formal definition, we introduce an aux-
iliary notion which plays the role of width in classical (non-equivariant) universality results (Pinkus,
1999), since it can be interpreted as the dimension of intermediate invariant feature representations.
If V and W are permutation representations of a finite group G and M ⊆ AffG(V,W ) is as defined
in (1), then, for each h, k ∈ N we define Mk×h as the subspace of AffG(V ⊗ Rk,W ⊗ Rh):

Mk×h :=

{
x 7→

(∑h
i=1 f1,i(x), . . . ,

∑h
i=1 fk,i(x)

)
fij ∈M, i = 1, . . . , k, j = 1, . . . , h

}
. (3)

Example 2. Recall that the definition of L = Aff(R,R), the layer space Lk×h is the set of all
affine maps from Rk to Rh, namely Aff(Rk,Rh). Since L = AffG(R,R) where G acts trivially on
R, this layer space can be interpreted as the space of affine G-equivariant maps between trivial
representations. In this sense, the multiplicities k and h correspond to the widths of intermediate
representations in the standard neural network setting.

With the above notation in place, we can now provide a general definition of universality classes.
Intuitively, a universality class consists of all functions that can be uniformly approximated on
compact sets by neural networks of a given architecture, with variable multiplicities of layer spaces.
Definition 4 (Universality Classes). The universality class Uσ(M1, . . . ,Md) associated with the
layer spaces M1, . . . ,Md is defined as

Uσ(M1, . . . ,Md) :=
⋃

h⃗∈Nd−1

Nσ

(
M1×h1

1 ,Mh1×h2
2 ,Mh2×h3

3 , . . . ,M
hd−2×hd−1

d−1 ,M
hd−1×1
d

)
,

where the overline denotes closure in the topology of uniform convergence on compact sets.

Invariant networks are inherently unable to distinguish between elements in the same group orbits,
but additional undesired separability constraints may arise when dealing with neural networks with
particular architectures employed in practice. A prominent example is given by graph neural networks,
which are known to be subject to separation constraints equivalent to the Weisfeiler–Leman test
(Chen et al., 2019). To study the universality classes arising from architectures employed in practice,
we must therefore take these separability constraints into account. We will use the following natural
definitions of separation and of separation-constrained universality.
Definition 5 (Separation-Constrained Universality). Let U ⊆ {f : V →W} be a family of functions.
We say that U separates two points α, β ∈ V if there exists f ∈ U such that f(α) ̸= f(β). The set of
pairs that cannot be distinguished by any f ∈ U induces an equivalence relation:

ρ(U) =
{
(α, β) ∈ V × V | f(α) = f(β) for all f ∈ U

}
.

We say that U is separation-constrained universal if it approximates exactly the class of continuous
functions that preserve the equivalence relation ρ = ρ(U), namely

Cρ(V,W ) =
{
f ∈ C(V,W ) | f(α) = f(β) whenever (α, β) ∈ ρ

}
.

Note that separability is a necessary condition for uniform approximation on compact sets: any
sequence of functions with prescribed separation power ρ converges only to functions that also respect
ρ. In other words, Cρ(V,W ) is a closed subset of C(V,W ) in the topology of uniform convergence
on compact sets.

As noted in Sections 1 and 2, the literature on universality for equivariant neural networks is
typically architecture-dependent, often focusing on the invariant case, and when general, relying on
impractically large intermediate representations.
Prior Work. Here we summarize, to the best of our knowledge, known universality results, recasting
them within a unified framework of universality classes and separation-constrained approximability.

1. The classical universality theorem of Pinkus (1999), which states that neural networks can
approximate any continuous function, translates in this framework as Uσ(L,L) = C(R,R).
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2. Segol & Lipman (2020) show that a simplified version of 3-layer PointNets, where convolu-
tional filters of width 1 appear only in certain layers (see Examples 1.iii and iv), is universal.
This, in turn, implies that full 3-layer PointNets are universal in the class of continuous
Sn-equivariant functions. Namely, Uσ(C,P,C) = Uσ(P, P, P ) = CSn

(Rn,Rn).

3. Ravanbakhsh (2020) shows that shallow equivariant networks with regular representations
as hidden layers are universal among G-equivariant functions. Namely, for permutation
representations V and W , Uσ(M,N) = CG(V,W ) where M = AffG(V,RG) and N =
AffG(RG,W ).

4. Joshi et al. (2023) show that models expressive enough to distinguish all G-orbits be-
come universal in the invariant sense once augmented with a shallow neural network
head. Namely, if the neural space Nσ(M1, . . . ,Md, I) separates G-orbits in Rn, then
the associated universality class, augmented with a shallow network head, satisfies
Uσ(M1, . . . ,Md, I, L) = CG(Rn,R).

5. Geerts (2020); Maron et al. (2019a); Chen et al. (2019) show that graph neural networks
and invariant graph networks (Maron et al., 2018) can approximate any continuous in-
variant function with the same separation power as the Weisfeiler–Leman test. Namely,
for the layer space M = AffSn

((Rn)⊗k, (Rn)⊗k), which processes k-order relational
structures equivariantly, Uσ(M, ...,M︸ ︷︷ ︸

d times

, I, L) = Ck-WLd

(
(Rn)⊗k, (Rn)⊗k

)
, that is, the set

of continuous functions with the same separation power as the k-WL test after d iterations.

6. Moreover, Pacini et al. (2025) show that in some cases the final trivial layer, as in the two
previous examples, is necessary for separation-constrained universality when certain repre-
sentations are involved. Namely, they prove that Uσ(C, I) ⊊ Uσ(P, I) ⊊ CSn

(Rn,R), even
though these spaces exhibit the same separation power: ρ

(
Uσ(C, I)

)
= ρ

(
Uσ(P, I)

)
=

ρ
(
CSn(Rn,R)

)
.

4 SEPARATION-CONSTRAINED UNIVERSALITY FOR INVARIANT NETWORKS

In this section, we establish a general result on separation-constrained universality (Definition 5) for
invariant neural networks, extending prior works on invariant universality (see Prior Work 4 and 5).
In particular, we prove that pathological mismatches between separation power and approximation
power (see Prior Work 6) can always be resolved by adding a fully connected readout layer.
Theorem 1. Let M1, . . . ,Md be layer spaces as defined in Definition 1 and recall that I denotes the
layer space of invariant linear functions from Example 1.ii. Set ρ = ρ

(
Uσ(M1, . . . ,Md, I)

)
. Then

Uσ(M1, . . . ,Md, I, L) = Cρ(V ). (4)

Proof of Theorem 1. Note that by Theorem 4 in Pacini et al. (2024b) and the remark following it,
ρ is preserved under the extension from Nσ(M1, . . . ,Md, I, L) to Uσ(M1, . . . ,Md, I, L) and from
Nσ(M1, . . . ,Md, I) to Uσ(M1, . . . ,Md, I), therefore

ρ = ρ(Nσ(M1, . . . ,Md, I)) = ρ(Nσ(M1, . . . ,Md, I, L)).

Hence we get Uσ(M1, . . . ,Md, I, L) ⊆ Cρ(V ) and we only have to prove the opposite inclusion.
Given functions f1, . . . , fh ∈ C(V,R), define their parallelization as Fh = (f1, . . . , fh) : V −→ Rh,
Fh(x) = (f1(x), . . . , fh(x)), and set

Ah :=
{
η ◦ Fh | η ∈ C(Rh)

}
, A′

h :=
{
η ◦ Fh | η ∈

⋃
k∈N

Nσ(L
h×k, Lk×1)

}
. (5)

Note that by the universal approximation theorem, Ah = Ah = A′
h. From now on we will take

F = {fh}h∈N to be a family of functions such that ρ(F) = ρ. We get via a result from the appendix
that

Cρ(V )
Lemma 3

=
⋃
h∈N

Ah =
⋃
h∈N

A′
h. (6)
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Define
Nh :=

⋃
k⃗∈Nd+1

Nσ(M
1×k1
1 , . . . ,M

kd−1×kd

d , Ikd×h) for each h ∈ N .

Then we can write

Uσ(M1, . . . ,Md, I, L) =
⋃

k⃗∈Nd+1

Nσ(M
1×k1
1 , . . . ,M

kd−1×kd

d , Ikd×k, Lk×1)

=
⋃

k̃∈Nd+2

Nσ(M
1×k1
1 , . . . ,M

kd−1×kd

d , Ikd×h) ◦̂ Nσ(Lh×k, Lk×1)

=
⋃
h∈N

{
η ◦ f | f ∈ Nh, η ∈

⋃
k∈N

Nσ(Lh×k, Lk×1)

}
Equation 5

⊇
⋃
h∈N

A′
h

Equation 6
= Cρ(V ).

To prove the above inclusion, if f1, . . . , fh ∈ Nσ(M1, . . . ,Md, I) then their parallelization
(f1, . . . , fh) belongs to Nh by Lemma 1 from the appendix. The last equality holds because of
Equation 6 and Corollary 2, since there exists a family of networks F = {fh}h∈N such that
fh ∈ Nσ(M1, . . . ,Md, I) for each h ∈ N and ρ(F) = ρ, and we can use this family to define
A′

h.

5 UNIVERSALITY OF EQUIVARIANT NEURAL NETWORKS

In this section, we extend the previous results to the equivariant setting. However, important differ-
ences between the invariant and equivariant cases emerge: in Section 5.1 we show that the standard
form of the separation relation as in Definition 5 often fails to faithfully characterize equivariant
universality classes, requiring us to introduce the notion of entry-wise separation (Definition 6). In
Section 5.2, we establish universality theorems analogous to Theorem 1, showing that the outcome
crucially depends on the choice of output space.

5.1 ENTRY-WISE SEPARATION

Here, we study equivariant functions by reducing the problem to the analysis of suitable invariant
functions, thereby connecting our setting to the results of Section 4. The main tool for this reduction
is the projection onto output coordinates. More precisely, let G be a finite group acting on the finite
set X . For x ∈ X consider the stabilizer of x, given by Gx = StabG(x) := {g ∈ G | gx = x}, and
the linear projection πx : RX → R onto the x-th coordinate. Then πx induces the pushforward map

πx∗ : CG(V,RX) −→ CGx
(V )

f 7−→ πx ◦ f.
Since the vector of projections satisfies (πx)x∈X = idRX , it follows that (πx∗)x∈X acts as the
identity on CG(V,RX). Thus, the study of universality for equivariant maps reduces to the problem
of synchronous universality of the invariant projection maps. However, below Proposition 1 shows
that the interaction between equivariance and the global separation ρ is non-trivial when projecting
functions onto different output entries.
Proposition 1. Let ρ = ρ(N ) be the separation relation of a family of equivariant neural networks
N . The restriction of πx to

CG,ρ(V,RX) := CG(V,RX) ∩ Cρ(V,RX)

is surjective onto CGx,ρ(V ), the space of Gx-invariant functions with separation relation ρ.

The proof for Proposition 1 and of all subsequent results may be found in the Appendix.

Proposition 1 shows that, after projection onto a single output coordinate, the space of equivariant
functions with separation ρ is constrained by a stricter relation. This relation combines ρ with the
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Gx-invariance relation, which identifies elements within each Gx-orbit. However, the following
example shows that this stricter condition remains insufficient to correctly characterize the universality
classes associated with equivariant architectures.

Example 3 (Separation for CNNs). Let C be the layer space of convolutional filters with width 1
defined in Example 1.iii. For the purpose of this example, it is sufficient to restrict C to go from Rn to
Rn with Sn acting in the standard way on Rn. Hence, (2) becomes

C :=
{
v 7→ x id ·v + y1

∣∣∣ x, y ∈ R
}
.

Consider the universality class for d ≥ 2:

Ud
σ(C) := Uσ(C, . . . , C︸ ︷︷ ︸

d times

).

We can show (see Proposition 4) that

Ud
σ(C) = {(x1, . . . , xn) 7→ (f(x1), . . . , f(xn)) | f ∈ C(R)} ⊊ CSn

(Rn,Rn). (7)

Note that idRn ∈ Ud
σ(C). Then, ρ(Ud

σ(C)) is the trivial separation relation, namely ρ(Ud
σ(C)) =

{(x, x) | x ∈ Rn}. Thus, the target space of separation-constrained universality is CSn,ρ(Rn,Rn) =
CSn

(Rn,Rn). However, (7) shows that Ud
σ(C) ⊊ CSn

(Rn,Rn) for each d ≥ 2. Or equivalently, in
this case separation-constrained universality can never be attained, regardless of depth d.

Example 3 shows that characterizing equivariant universality classes requires a finer notion of
separability, which we now define.

Definition 6 (Entry-wise Separation). LetG be a finite group acting on a finite setX = {x1, . . . , xn},
and let RX denote the associated permutation representation. Let V be another permutation
representation over G and N a neural space of functions in CG(V,RX). Let πx : RX → R be the
linear projection onto the x-th component for each x ∈ X . Define the family of separation relations

ρx(N ) := {(α, β) ∈ V × V | πxf(α) = πxf(β) for all f ∈ N}.

for each x ∈ X . We define the entry-wise separation relation as the collection of separation relations

ρ(N ) =
(
ρx1(N ), . . . , ρxn(N )

)
.

We define the set of continuous functions that respect ρ as

Cρ(V,RX) :=
{
f ∈ C(V,RX) | πxf(v1) = πxf(v2) ∀(v1, v2) ∈ ρx(N ), ∀x ∈ X

}
.

If a universality class with entry-wise separation ρ coincides with Cρ, we call it entry-wise separation
universal.

Note that ρ(N ) = ρx1(N )∩· · ·∩ρxn(N ), so the standard separation relation is implied by the entry-
wise separation relations. That is N ⊆ Cρ(N )(V,RX) ⊆ Cρ(N )(V,RX). As noted in Section 3.3,
separation is a necessary condition for approximation, and now we see entry-wise separation is
necessary as well. Note that in certain cases entry-wise separation reduces entirely to the standard
separation relation, for instance in the invariant case where G acts trivially on R, or more simply
when ρ(N ) = ρx1

(N ) = · · · = ρxn
(N ). Yet, Example 3 shows that entry-wise separation can, in

fact, be strictly stronger than standard separation. Indeed, on the one hand (7) gives

π1∗Ud
σ(C) = { (x1, . . . , xn) 7→ f(x1) | f ∈ C(R) } ⊊ CStabSn (1)(Rn,R),

while on the other hand, we have π1∗Ud
σ(C) = Cρ1

(Rn,R). If we denote Rn = R × Rn−1, here
ρ1 :=

{
((x1, x), (y1, y)) ∈ (R × Rn−1)2

∣∣ x1 = y1
}

. Analogous results hold for the other ρi,
with i = 2, . . . , n. This proves the following proposition and shows that the universality class in
Example 3 can be completely characterized by entry-wise separation universality.

Proposition 2. Define ρ = ρ
(
Ud
σ(C)

)
. Then, Ud

σ(C) = Cρ(Rn,Rn).

8
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5.2 ENTRY-WISE SEPARATION CONSTRAINED UNIVERSALITY

Now we are ready to state universality results under the more general notion of entry-wise separability
as discussed in Section 5.1.
Theorem 2. Let V0, . . . , Vh be permutation representations of a finite group G. Let X be a finite
G-set and RX its associated permutation representation. Let M1, . . . ,Mh be layer spaces in
AffG(Vi−1, Vi) for i = 1, . . . , h, and let M be a layer space in AffG(RX ,RX) containing the
identity map. Let d be such that

ρ := ρ
(
Uσ(M1, . . . ,Mh,M, ...,M︸ ︷︷ ︸

d times

)
)
= ρ
(
Uσ(M1, . . . ,Mh,M, ...,M︸ ︷︷ ︸

d+1 times

)
)
. (8)

Then,
Uσ(M1, . . . ,Mh,M, ...,M︸ ︷︷ ︸

d+2 times

) = Cρ(V0,RX).

In other words, repeating the output layer beyond the separation-stabilization threshold ensures
entry-wise separation-constrained universality.

Since by Theorem 3 of Pacini et al. (2024b), separation is known to stabilize after a certain depth, we
obtain the following corollary.
Corollary 1. Assume the notation of Theorem 2. There exists a natural number D for which
Uσ(M1, . . . ,Mf ,M, ...,M︸ ︷︷ ︸

d times

) is entry-wise separation-constrained universal for each d ≥ D.

In a different direction, we can show that entry-wise separation-constrained universality can be
achieved when the output layer is a convolutional filter of width 1, without the requirement of
sufficient depth as in Theorem 2 and Corollary 1. This is formalized as follows.
Theorem 3. Let V0, . . . , Vf be permutation representations of a finite group G. Let X be a finite
G-set and RX its associated permutation representation. Let M1, . . . ,Mf be layer spaces in
AffG(Vi−1, Vi) for i = 1, . . . , f , and let C be a layer space in AffG(RX ,RX) of convolutional
filters with width 1 as defined in Example 1.iii. Then Uσ(M1, . . . ,Mf , C) = Cρ(V ), where ρ :=
ρ
(
Uσ(M1, . . . ,Mf , C)

)
.

Note that when C is defined on a one-dimensional space, we have C = L, and Md becomes the
invariant layer space I . In this case, Theorem 3, which is formulated in the equivariant setting,
specializes to Theorem 1—the corresponding result in the invariant setting.

At first sight, it may be tempting to compare Theorem 2 and Theorem 3 and conclude that Theorem 3
is a stronger statement. However, it is important to note that adding the C layer space at the end does
not change the entry-wise separation power of the model class, whereas adding a certain number of
M layers may increase it. Theorem 2 explicitly accounts for this effect.

Theorem 2 and Corollary 1 may be particularly relevant for their practical implications: they ensure
that maximal expressivity is reached at finite depth and rule out the possibility of unbounded
improvement. Theorem 3, on the other hand, is instrumental in recovering known results such as
(Segol & Lipman, 2020). It also shows that universality stabilization in Theorem 2 and Corollary 1
can occur at the same depth as entry-wise separation stabilization, revealing that the threshold in
Theorem 2 is not always optimal.
Remark 1. Thanks to Theorem 3, we can easily recover the universality result of Segol & Lip-
man (2020). Namely, Uσ(C,P,C) = Uσ(P, P, P ) = CSn

(Rn,Rn). It remains to verify that
π∗
i Nσ(C,P,C) separates StabSn(i)-orbits in Rn, which follows directly from Lemma 5 (Ap-

pendix B.2).

Note that this shows that the depth threshold required for separation-stability in Theorem 2 provides
a sufficient, but not necessary, condition for universality. Indeed, ρ

(
Uσ(P, P, P )

)
⊊ ρ
(
Uσ(P, P )

)
,

so separation has not stabilized, yet entry-wise separation universality is already achieved. However,
determining in general when separation stabilization takes place is a difficult problem. Corollary 1
guarantees that maximal expressivity is reached after a finite number of steps and then saturates. This
result supports the intuition that increasing depth enhances expressivity. Less intuitively, it also shows

9
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that beyond a certain threshold, saturation occurs and further increases in depth no longer affect the
universality class.
Remark 2. Theorem 3 marks a significant difference between the equivariant and the invariant cases.
Indeed, Pacini et al. (2025) shows that, although ρ(Uσ(C, I)) = ρ(Uσ(P, I)) = ρ(CSn(Rn,R)),
the corresponding universality classes satisfy Uσ(C, I) ⊊ Uσ(P, I) ⊊ CSn(Rn,R). These strict
inequalities are proved via a characterization through differential operators. In the equivariant
case, we have Uσ(C,C) ⊊ Uσ(P,C) ⊆ CSn

(Rn,Rn), yet as we showed here, both spaces can
be characterized in terms of entry-wise separation, without resorting to the differential operator
characterization. Note that we expect this to be a phenomenon specific to networks with output
layers in AffG(RX ,RX). Output spaces in AffG(RX ,R), or more generally in AffG(RX ,RY ), may
instead require a characterization in terms of differential operators for arbitrary finite G-sets Y .

6 LIMITATIONS

Our results characterize universality of deep invariant and equivariant networks under separation
constraints, but several limitations remain which provide avenues for future work. First, the theory
applies to networks with point-wise activations and permutation representations. Extending the
analysis to other types of representations or more general nonlinearities may require different
approaches. Second, our universality theorems are asymptotic and do not provide quantitative
approximation rates or sample complexity bounds, which are important for understanding expressivity
in practice. Finally, we have not addressed optimization or trainability: while depth is shown to be
sufficient for universality, when such networks can be efficiently trained remains an open question.

7 CONCLUSIONS

We established new universality results for deep invariant and equivariant networks. For invariance,
we proved that depth is sufficient to guarantee universality within the class of separation-respecting
functions. For equivariance, we introduced the refined concept of entry-wise separability and showed
that, once entry-wise relations stabilize, deep equivariant networks achieve universality. Taken
together, these results unify and extend prior shallow or architecture-specific universality theorems,
highlighting depth as a general mechanism for universality in equivariant models. We hope this
framework provides a basis for future advances in the analysis and design of expressive, symmetry-
aware, neural networks.

10
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A SEPARATION-CONSTRAINED UNIVERSALITY FOR INVARIANT NETWORKS

The following definitions and lemmas are used for the proof of Theorem 1.

Lemma 1. Let f1, . . . , fh ∈ Nσ(M1, . . . ,Md, I) then their parallelization (f1, . . . , fh) belongs to⋃
k̃∈Nd+1 Nσ(M

1×k1
1 , . . . ,M

kd−1×h
d ).

Proof of Lemma 1. Let us consider the case h = 2; for h > 2, the proof is analogous.

Let f1, f2 ∈ Nσ(M1, . . . ,Md). Then each affine layer at depth i in (f1, f2) is a block diagonal
matrix whose first block is the i-th layer of f1 and the second is the i-th layer of f2; a similar analysis
holds for the bias terms. Hence, this layer belongs to M2×2

i for i > 1. For i = 1, the first linear layer
of (f1, f2) is a block column matrix where each block is the first layer of f1 and f2; again, a similar
analysis holds for the bias terms. Hence, this layer belongs to M1×2

1 . This shows that

(f1, f2) ∈ Nσ(M
1×2
1 ,M2×2

2 , . . . ,M2×2
d ) ⊆

⋃
k̃∈Nd−1

Nσ(M
1×k1
1 , . . . ,M

kd−1×2
d ).

Definition 7. Let M1, . . . ,Md be layer spaces. Let Bi be bases for the layer space Mi, and define

MQ
i := SpanQ Bi

for each i = 1, . . . , d. Define rational neural spaces as follows:

Nσ
Q(M1, . . . ,Md) := Nσ(M

Q
1 , . . . ,M

Q
d ).

Note that Nσ
Q(M1, . . . ,Md) depends on the choice of the bases B1, . . . ,Bd.

Lemma 2. In the notation of Definition 7,

ρ(Nσ(M1, . . . ,Md)) = ρ(Nσ
Q(M1, . . . ,Md)).

Therefore, ρ(Nσ
Q(M1, . . . ,Md)) does not depend on the choice of bases B1, . . . ,Bd.

Proof of Lemma 2. By the continuity of the parametrization map and the density of MQ
i in Mi.

Lemma 2 implies the following corollary.

Corollary 2. There exists a countable family F = {fh}h∈N ⊆ Nσ(M1, . . . ,Md) such that

ρ(F) = ρ(Nσ(M1, . . . ,Md)).

Lemma 3. Let V = Rd with its usual topology and let ρ be a closed equivalence relation on V . For
a family F = {fn}n∈N of continuous maps fn : V → Rm such that ρ(F) = ρ. Then the set

A :=
⋃
n≥1

{
A(f1, . . . , fn)|K : A ∈ C

(
(Rm)n,R

)}
is dense in Cρ(V ). Or equivalently, for every h ∈ Cρ(V ) there exist nk ↑ ∞ and Ank

∈
C((Rm)nk ,R) such that Ank

(f1, . . . , fnk
) → h.

Proof of Lemma 3. For x ∈ V set F̂ (x) := (fn(x))n∈N. Fix a compact K ⊂ V . Since each fn is
continuous, F̂ (K) is compact in the product V N. Note that ρ = {(x, y) ∈ V 2 : F̂ (x) = F̂ (y)},
so that the map ϕ : K/ρ → F̂ (K) defined by ϕ([x]) := F̂ (x) is well defined. Furthermore ϕ
is continuous and bijective, and since K/ρ is compact Hausdorff and F̂ (K) is Hausdorff, ϕ is a
homeomorphism. Hence every h ∈ Cρ(K) factors uniquely as

h = H ◦ F̂ |K for a unique H ∈ C(F̂ (K),R).
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Let πn : (Rm)N → (Rm)n be the projection onto the first n coordinates. Note that

A =
⋃
n≥1

{
A ◦ πn

∣∣
F̂ (K)

: A ∈ C
(
(Rm)n,R

)}
.

Then A is a sub-algebra of C(F̂ (K)) containing constants. We next prove that A separates points.
Indeed, if y, y′ ∈ F̂ (K) with y ̸= y′, then there exists j with yj ̸= y′j ; define the continuous
scalar function p : Rm → R such as p(u) = ⟨u, yj − y′j⟩, and note that p(yj) ̸= p(y′j) and
choose A ∈ C((Rm)n) given by A(z1, . . . , zj , . . . ) := p(zj). This function A lies in A and satisfies
(A ◦ πj)(y) ̸= (A ◦ πj)(y′) as desired. Now we may use the Stone–Weierstrass theorem, which gives
that A = C(F̂ (K)) in the uniform norm, concluding the proof.

B UNIVERSALITY OF EQUIVARIANT NEURAL NETWORKS

B.1 ENTRY-WISE SEPARATION

In this section, we study equivariant functions by reducing the problem to the analysis of particular
invariant functions, thereby extending the previous results. The tools used for this reduction are
suitable projections onto output coordinates, together with reconstruction maps that allow us to
recover the entire function from a single projection. For the sake of presentation, we begin by
considering the case where G acts transitively on X . Let x ∈ X , and let Gx denote the stabilizer of x.
Let πx : RX → R be the linear projection on the x-th coordinate in RX . We obtain the pushforward
map of πx, defined as

πx∗ :
CG(V,RX) → CGx(V )

f 7→ πx ◦ f.

Let g1, . . . , gt be a transversal for G/Gx, that is, a choice of representatives for classes in G/Gx. We
define the reconstruction map as

θ∗x :
CGx

(V ) → CG(V,RX)

f 7→
[
v 7→

∑t
i=1 f(g

−1
i v)egix

]
.

Proposition 3. If the action of G on X is transitive, then reconstruction map θ∗x is a well-defined,
continuous linear operator such that

(i) πx∗ ◦ θ∗x = idCGx (V ),

(ii) θ∗x ◦ πx∗ = idCG(V,RX).

Proof. Choosing a different representative for each gi means choosing an element gi · h for an
arbitrary h ∈ Gx. For f ∈ CGx(V ), the Gx-invariance of f implies

f((gi · h)−1v) = f(h−1 · g−1
i v) = f(g−1

i v).

Then egihx = egix since h ∈ Gx. As a consequence, the choice of representatives g1, . . . , gt does
not affect θ∗x(f). Next, we prove that θ∗x(f) is G-equivariant: indeed, for g ∈ G we have

θ∗x(f)(gv) =

t∑
i=1

f(g−1
i gv)egix =

t∑
i=1

f(g−1
i v)eg−1gix = g ·

t∑
i=1

f(g−1
i v)egix = g · θ∗x(f)(v),

where in the second equality we use the fact that g−1g1, . . . , g
−1gt is another transversal for G/Gx.

These observations prove that θ∗x is well-defined. It is continuous and linear since it is the composition
of continuous and linear functions. We can choose g1 = e, in which case the x-th coefficient in
θ∗x(f)(v) is simply f(v), proving (i). To prove (ii), notice that for x ∈ X , the set g1, . . . , gt is a
transversal of G/Gx if and only if g1x, . . . , gtx is the G-orbit of x. Thus for each f ∈ C(V,RX) we
can write

f(v) =

t∑
i=1

πgixf(v)egix. (9)
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Now for f ∈ CG(V,RX), we can conclude (ii) as follows:

θ∗xπx∗f(v) =

t∑
i=1

πxf(g
−1
i v)egix =

t∑
i=1

πxg
−1
i · f(v)egix =

t∑
i=1

πgixf(v)egix
Equation 9

= f(v).

Proposition 3 says that πx∗ is a linear homeomorphism, hence, a function class N is dense in
CG(V,RX) if and only if πx∗(N ) is. This means that we can restrict ourselves to the study of
function families of type πx∗(N ), which are similar to the study conducted in Section 3.3.

Proof of Proposition 1. The claim follows directly from Proposition 3: applying πx yields one
inclusion, while the reconstruction map yields the other.

Remark 3 (Linear case). In particular, in the affine case we obtain,

πx∗ :
AffG(V,RX) → AffGx

(V,R)
f 7→ πx ◦ f.

Note that characterizing AffGx
(V,R) reduces to computing V Gx . If V = RY for a finite G-set Y ,

then we just need to compute the orbits of Gx on Y .

The previous observations translate with minor modifications to the non-transitive case, which we
address in the next paragraph. Let X = Y1 ⊔ · · · ⊔ Ys denote the decomposition of X into G-orbits.
Observe that

CG(V,RX) = CG(V,RY1)⊕ · · · ⊕ CG(V,RYs),

since the orbits form a disjoint partition of X . Let x1, . . . , xs be elements chosen in Y1, . . . , Ys,
respectively. Note that

πx∗
i
CG(V,RX) = πx∗

i
CG(V,RYi)

for each i = 1, . . . , s. Moreover, for each i = 1, . . . , s, we have

CG(V,RYi) = θ∗xi
πx∗

i
CG(V,RYi) = θ∗xi

πx∗
i
CG(V,RX).

Thus,
CG(V,RX) = θ∗x1

(
CGx1

(V,R)
)
⊕ · · · ⊕ θ∗xs

(
CGxs

(V,R)
)
. (10)

In particular, we focus on closed linear subspaces U ⊆ CG(V,RX). Equation 10 allows us to restrict
our attention to the subspaces πx∗

i
U , for each i = 1, . . . , s.

Proposition 4. The following equality is true:

Uσ(C, . . . , C︸ ︷︷ ︸
d times

) = {(x1, . . . , xn) 7→ (f(x1), . . . , f(xn)) | f ∈ C(R)} ⊊ CSn
(Rn,Rn). (11)

Proof of Proposition 4. We start by considering the case d = 2 and then study the more general
neural space Nσ(C

1,h, Ch×k).

Recall λ(C) = Span {x 7→ idRX · x}. Elements in C1,h can be represented as affine maps x 7→
Bx+ c where B and c have the following block representations

B =

b1 id...
bh id

 and c =

c11...
ch1

 .
While elements in Ch,k can be represented as affine maps x 7→ Ax+ d where d ∈ R and

A =

a1,1 · idRX · · · a1,h · idRX

...
...

...
ak,1 · idRX · · · ah,h · idRX

 = Ã⊗ idRX ,

where Ã = [ai,j ] ∈ Rk×h.
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Given i ∈ X and s = 1, . . . , h, we can write elements θ ∈ Nσ(C
1,h, Ch,k) as

θs,i(x) = Aσ(Bx+ c) =

h∑
j=1

as,jσ (bjxi + cj)

for some ai, bj , cj ∈ R. But note that

θs,i(x) =

h∑
j=1

as,jσ (bjxi + cj) = ξs(x) (12)

where

ξs(y) :=

h∑
j=1

as,jσ (bjy + cj) .

That is, ξ ∈ Nσ(Rm,Rh,Rk). In other words, taking the limit as h → ∞ and setting k = 1, we
obtain the proof of the theorem for the case d = 2. For d > 2, it suffices to note that the composition
of spaces of the type Nσ(C

1,h, Ch×k) again yields elements of the same type. This concludes the
proof.

B.2 ENTRY-WISE SEPARATION CONSTRAINED UNIVERSALITY

Let Mi < AffG(RX ,RX) for i = 1, . . . , d and Px := πx∗Md+1, we obtain

πx∗ Uσ(M1, . . . ,Md,Md+1) =

Uσ(M1, . . . ,Md, πx∗Md+1) = Uσ(M1, . . . ,Md, Px).

Note that Px < AffGx
(RX ,R) thanks to Remark 3. Let X1, . . . , Xℓ be the orbits of Gx over X .

Then

HomGx
(RX ,R) = HomGx

(RX1⊔···⊔Xℓ ,R) =
HomGx

(RX1 ⊕ · · · ⊕ RXℓ ,R) = HomGx
(RX1 ,R)⊕ · · · ⊕HomGx

(RXℓ ,R).

Then there are projections

αi : HomGx(RX ,R) → HomGx(RXi ,R), i = 1, . . . , ℓ.

We define
Ii < AffGx

(RXi ,R) < AffGx
(RX ,R),

where the linear component of Ii is given by αiλ(Px), and its translation component equals τ(Px).
In particular, since Gx is the stabilizer of x in X , one of the orbits is the singleton {x} itself. Without
loss of generality, we assume X1 = {x}. We also assume that id ∈M , in which case I1 = L, where
L = Aff(R,R).

We now prove Theorem 2. For this purpose, we will make use of the following lemmas.
Lemma 4. With the notation of Theorem 2, and setting for simplicity P := Pxi

and ρ := ρi, for any
d ≥ 1 the following separation-constrained universality holds

Uσ(M1, ...,Md, P, I1) = Cρ(V ). (13)

Proof of Lemma 4. Recall that every f ∈ Aff(V,W ) can be uniquely decomposed as f = τw ◦ ϕ
with τw(w′) = w′ + w, for some ϕ ∈ Hom(V,W ) and w,w′ ∈ W . From Pacini et al. (2024a),
we have that the map f is G-equivariant precisely when ϕ is G-equivariant and v belongs to the
fixed-point subspace WG = {w ∈ W | gw = w for all g ∈ G }. In particular, there is a natural
linear projection λ : AffG(V,W ) → HomG(V,W ) which associates to an equivariant affine map its
linear component.

Write
λ(P ) = Span{ϕ1, . . . , ϕℓ} ⊆ HomGx(RX ,R).

Note that I1 = L (Example 1.i). Elements in Nσ(P
1×k, Lk×1) can be represented as maps

η : v 7→ a⊤σ(Bv + c)
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where a, B and c have the following block representations

a =

a1...
ak

 , B =

b1,1ϕ
1 + · · ·+ b1,mϕ

m

...
bk,1ϕ

1 + · · ·+ bk,mϕ
m

 , and c =

c1...
ck

 .
Therefore, we can write

η(v) =

k∑
i=1

aiσ

 ℓ∑
j=1

bi,jϕ
j(v) + ci

 = ζ(ϕ1(v), . . . , ϕℓ(v))

where ζ ∈ Nσ(L
ℓ×k, Lk×1). In a similar way, any function η ∈ Nσ(P

h×k, Lk×1) can be written as

η(v) = ζ(ϕ1,1(v), . . . , ϕℓ,1(v), . . . , ϕ1,h(v), . . . , ϕℓ,h(v)) (14)

where λ(Ph×1) = Span{ϕ1,i, . . . , ϕℓ,i}i=1,...,h. Any function

ξ ∈ Nσ(M
1×h1
1 , . . . ,Mhd×h

d , Ph×k, Lk×1)

can be written as
ξ = η ◦ σ ◦ θ

where η ∈ Nσ(P
h×k, Lk×1) and θ ∈ Nσ(M

1×h1
1 , . . . ,Mhd×h

d ). Plugging this into Equation 14, we
obtain

η ◦ σ ◦ θ(w) = ζ
[(
ϕ1,i(σ ◦ θ(w)), . . . , ϕℓ,i(σ ◦ θ(w)

)
i=1,...,h

]
.

Note that

ρ = ρ
({
ϕj,i ◦ σ ◦ θ | θ ∈ Nσ(M

1×h1
1 , . . . ,Mhd×h

d ), i ∈ [h], j ∈ [ℓ])
})

since ϕ1,i, . . . , ϕℓ,i is a basis for λ(Ph×1) for each i = 1, . . . , h. We conclude the proof by following
the argument of Theorem 1, applying Lemma 3 to θ with rational parameters, and observing that
ζ ∈ Uσ(L

ℓh×1, L) = C(Rℓh).

For brevity, we will state all subsequent propositions and lemmas in terms of Uσ(M, ...,M︸ ︷︷ ︸
d times

, P )

or similar forms. The same statements, however, extend verbatim to the more general setting
Uσ(M1, . . . ,Md,M, ...,M︸ ︷︷ ︸

d times

, P ).

Proof of Theorem 2. Thanks to Equation 10, it suffices to prove that

Uσ(M, ...,M︸ ︷︷ ︸
d+1 times

, Pxi
) = CGxi

,ρi
(RX ,R), i = 1, . . . , s.

In the following, we drop the indices for simplicity of exposition. First note that

Uσ(M, ...,M︸ ︷︷ ︸
d+1 times

, I1) ⊆ Uσ(M, ...,M︸ ︷︷ ︸
d+1 times

, P ) ⊆ Cρ(V ), (15)

where the first inclusion second inclusion follows because I1 ⊆ P and the last inclusion comes from
the definition of ρ. For the inclusions in the opposite direction, note that

Cρ(V ) = Uσ(M, ...,M︸ ︷︷ ︸
d times

, P, I1) ⊆ Uσ(M, ...,M︸ ︷︷ ︸
d times

,M, I1), (16)

where the first equality is true by Lemma 4 and the following inclusion holds because M is more
expressive than P by definition. Now using Equations 15 and 16 the claim directly follows.

Proof of Theorem 3. Note that

π1∗ Uσ(M1, . . . ,Mf , C) = Uσ(M1, . . . ,Mf , I1) = Uσ(M1, . . . ,Mf−1, π1Mf , I1).

The proof follows directly from Lemma 4.
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Lemma 5. The projection π∗
i Nσ(C,P,C) separates StabSn

(i)-orbits in Rn.

Proof. Note that in general

Nσ(M1, . . . ,Md) = Nσ(M1, . . . ,Mi−1, C) ◦̂ Nσ(Mi, . . . ,Md)

We start by addressing the general invariant case first, namely:

Nσ(M
1×h, Nh×k, Ik×1) = Nσ(M

1×h, Ch×k) ◦̂ Nσ(N
h×k, Ik×1), (17)

Thanks to Equation 17 we can focus on writing down distinct formulas for functions in both
Nσ(N

h×k, Ik×1) and Nσ(M
1×h, Ch×h).

Consider the space Nσ(N
h×k, Ik×1).

Let n = dimλ(N) and let ϕ1, . . . , ϕhn be a basis for Nh×1 and λ(I) = Span {x 7→ 1
t · x}.

Elements in Nh×k can be represented as affine maps x 7→ Bx+ c where B and c have the following
block representations

B =

b1,1ϕ
1 + · · ·+ b1,mϕ

m

...
bh,1ϕ

1 + · · ·+ bh,mϕ
m

 and c =

c11...
ch1

 .
While elements in Ih×1 can be represented as affine maps x 7→ Ax+ d where d ∈ R and

A =

a11...
ah1


⊤

.

Denote by ϕji the projection of the i-th component of the function ϕj . We can write elements
η ∈ Nσ(N

h×k, Ik×1) as

η(x) = Aσ(Bx+ c) =

k∑
j=1

aj
∑
i∈Y

σ

(
hn∑
t=1

bj,tϕ
t
i(x) + cj

)

for some ai, bj,t, cj ∈ R. But note that

η(x) =

k∑
j=1

aj
∑
i∈Y

σ

(
hn∑
t=1

bj,tϕ
t
i(x) + cj

)
= (18)

∑
i∈Y

k∑
j=1

ajσ

(
hn∑
t=1

bj,tϕ
t
i(x) + cj

)
=
∑
i∈Y

ζ(ϕ1i (x), . . . , ϕ
hn
i (x)) (19)

where

ζ(y1, . . . , yhn) :=

k∑
j=1

ajσ

(
hn∑
t=1

bj,tyt + cj

)
is a standard multilayer perceptron in Nσ(L

hn×k, Lk×1).

Consider now the space Nσ(M
1×h, Ch×h).

Let m = dimλ(M) and let ψ1, . . . , ψm be a basis for M and λ(C) = Span {x 7→ idRX · x}.
Elements in M1×h can be represented as affine maps x 7→ Bx+ c where B and c have the following
block representations

B =

b1,1ψ
1 + · · ·+ b1,mψ

m

...
bh,1ψ

1 + · · ·+ bh,mψ
m

 and c =

c11...
ch1

 .
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While elements in Ch×h can be represented as affine maps x 7→ Ax+ d where d ∈ R and

A =

a1,1 · idRX · · · a1,h · idRX

...
...

...
ah,1 · idRX · · · ah,h · idRX

 = Ã⊗ idRX ,

where Ã = [ai,j ]i,j=1,...,h.

Denote by ψj
i the projection of the i-th component of the function ψj . Given i ∈ X and s = 1, . . . , h,

we can write elements θ ∈ Nσ(M
1×h, Ch×h) as

θs,i(x) = Aσ(Bx+ c) =

h∑
j=1

as,jσ

(
m∑
t=1

bj,tψ
t
i(x) + cj

)
for some ai, bj,t, cj ∈ R. But note that

θs,i(x) =

h∑
j=1

as,jσ

(
m∑
t=1

bj,tψ
t
i(x) + cj

)
= ξs(ψ

1
i (x), . . . , ψ

m
i (x)) (20)

where

ξs(y1, . . . , ym) :=

h∑
j=1

as,jσ

(
m∑
t=1

bj,tyt + cj

)
.

Namely, ξ ∈ Nσ(L
m×h, Lh×s).

Consider now the composition Nσ(M
1×h, Nh×k, Ik×1).

Each element in Nσ(M
1×h, Nh×k, Ik×1) is written as

η ◦ θ(x) =
∑
i∈Y

ζ(ϕ1,1i (θ1,∗(x)), . . . , ϕ
h,n
i (θ1,∗(x))) = (21)∑

i∈Y

ζ(ϕ1,1i ([ξ1(ψ
1
j (x), . . . , ψ

hm
j (x))]j∈X), . . . , ϕh,ni ([ξh(ψ

1
j (x), . . . , ψ

hm
j (x))]j∈X)). (22)

Consider the case

M = AffSn(Rn,Rn) =
{
v 7→ (λI + µ1⊤

1)v + y1[n]

∣∣ λ, y ∈ R
}
.

In this case we have a basis defined by

ϕ1 = I and ϕ2 = 1
⊤
1.

In particular, for each i = 1, . . . , n:

ϕ1i = e⊤i and ϕ2i = 1
⊤.

Therefore, for x ∈ Rn:
ϕ̃i(x) = (e⊤i · x,1⊤ · x),

or, alternatively, for x = (x1, . . . , xn),

ϕ̃i(x) = (xi, x1 + · · ·+ xn).

• We want to write elements in Nσ(M
1×h, Ih×1), by Equation 18, we have

η(x) =

n∑
i=1

ζ(xi, x1 + · · ·+ xn),

for some neural network ζ ∈ Nσ(L
2×h, Lh×1). Similarly, in the case Nσ(M

k×h, Ih×1),
for x1, . . . , xk ∈ Rn, we can write

η(x1, . . . , xk) =

n∑
i=1

ζ(x1,i, . . . , xk,i, x1, . . . , xk),

where xi = xi,1 + · · ·+ xi,n for i = 1, . . . , k and ζ ∈ Nσ(L
2k×h, Lh×1).
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• Now, we want to write functions in Nσ(M
1×k, Ck×k). Thanks to Equation 12, we can

write for s = 1, . . . , k and i = 1, . . . , n:

θs,i(x) = ξs(xi, x1 + · · ·+ xn)

for ξ ∈ Nσ(L
2×k, Lk×k).

• Compute Nσ(M
1×k,Mk×h, Ih×1) = Nσ(M

1×k, Ck×k) ◦̂ Nσ(M
k×h, Ih×1) by composi-

tion:

η ◦ θ(x) =
n∑

i=1

ζ(ξ1(xi, x), . . . , ξk(xi, x), ξ1(x), . . . , ξk(x))

where we write x = x1+ · · ·+xn and ξi(x) = ξi(x1, x)+ · · ·+ ξi(xn, x) for i = 1, . . . , k.

Note that:

– For k → ∞, we choose ξj to approximate the polynomial (x, y) 7→ xj for j =
1, . . . , k.

– Moreover, for h → ∞ and k ≥ n, we can choose ζ to approximate any function
(x1, . . . , xk, y1, . . . , yk) 7→ ζ̃(y1, . . . , yn) for any continuous function ζ̃ ∈ C(Rn).

Therefore,
η ◦ θ(x) = n · ζ̃(x1 + · · ·+ xn, . . . , x

n
1 + · · ·+ xnn).

We know that these functions are permutation invariant universal.

• Define P = π∗
1 (AffSn

(Rn,Rn)), where π∗
1 is the pushforward map defined in Proposition 3

for x = 1 ∈ [n].

Let e1 := e2 + · · ·+ en. Note that

P = AffS(n−1,1)
(Rn,R) =

{
x 7→ (λe1 + µe1)

⊤ · x+ c | λ, µ, c ∈ R
}
,

then

A =

a1,1e1 + a1,2e1
...

ah,1e1 + ah,2e1


⊤

.

Note that

η(x) = (23)
h∑

j=1

[
aj,1σ

(
m∑
t=1

bj,tϕ
t
1(x) + cj

)
+

n∑
i=2

aj,2σ

(
m∑
t=1

bj,tϕ
t
i(x) + cj

)]
= (24)

ζ1(ϕ
1
1(x), . . . , ϕ

m
1 (x)) +

n∑
i=2

ζ2(ϕ
1
i (x), . . . , ϕ

m
i (x)), (25)

where

ζs(y1, . . . , yn) :=

h∑
j=1

aj,sσ

(
h∑

t=1

bj,tyt + cj

)
for s = 1, 2. We want to write elements in Nσ(M

1×h, Ph×1), by adapting Equation 23, we
have

η(x) = ζ1(x1, x1 + · · ·+ xn) +

n∑
i=2

ζ2(xi, x1 + · · ·+ xn)

for some neural network ζ1, ζ2 ∈ Nσ(L
2×h, Lh×1).

• We want to write elements in Nσ(M
k×h, Ph×1):

η(x) = ζ1(x1,1, . . . , xk,1, x1, . . . , xk) +

n∑
i=2

ζ2(x1,i, . . . , xk,i, x1, . . . , xk)

for some neural network ζ1, ζ2 ∈ Nσ(L
2×h, Lh×1).
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• Compute Nσ(C
1×k,Mk×h, Ph×1) = Nσ(C

1×k, Ck×k) ◦̂ Nσ(M
k×h, Ph×1) by composi-

tion. With similar computations as above we obtain:

η(x) =

ζ1(ξ1(x1), . . . , ξk(x1), ξ1(x), . . . , ξk(x))+
n∑

i=2

ζ2(ξ1(xi), . . . , ξk(xi), ξ1(x), . . . , ξk(x))

where ξj(x) =
∑n

i=1 ξj(xi, x) for each j = 1, . . . , k.

– For k → ∞, we can approximate

ξj(x) → [x 7→ xj ]

for j = 1, . . . , k.
– Choose ζ1 to approximate any continuous function and set ζ2 everywhere zero, meaning

we can choose the readout output M to be C.

Then we obtain that

η(x) = ζ1(x1, x1 + · · ·+ xn, . . . , x
n
1 + · · ·+ xnn).

This set is universal in CS(n−1,1)
(Rn) where S(n−1,1) < Sn is the stabilizer of 1 inside [n].
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