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Abstract

Equivariant neural networks provide a principled framework for incorporating
symmetry into learning architectures and have been extensively analyzed through
the lens of their separation power, that is, the ability to distinguish inputs modulo
symmetry. This notion plays a central role in settings such as graph learning, where
it is often formalized via the Weisfeiler–Leman hierarchy. In contrast, the universal-
ity of equivariant models—their capacity to approximate target functions—remains
comparatively underexplored. In this work, we investigate the approximation
power of equivariant neural networks beyond separation constraints. We show
that separation power does not fully capture expressivity: models with identical
separation power may differ in their approximation ability. To demonstrate this,
we characterize the universality classes of shallow invariant networks, providing
a general framework for understanding which functions these architectures can
approximate. Since equivariant models reduce to invariant ones under projec-
tion, this analysis yields sufficient conditions under which shallow equivariant
networks fail to be universal. Conversely, we identify settings where shallow
models do achieve separation-constrained universality. These positive results, how-
ever, depend critically on structural properties of the symmetry group, such as the
existence of adequate normal subgroups, which may not hold in important cases
like permutation symmetry.

1 Introduction

Equivariant neural networks offer a principled framework to incorporate symmetry into learning
architectures, attracting sustained attention for both their empirical successes and theoretical rich-
ness [1–5]. While their separation power—the capacity to distinguish inputs up to symmetry—has
been extensively studied, comparatively less is understood about their approximation capabilities.

In classical approximation theory, expressivity is often characterized via universality—the capacity
of a model class to approximate any target function within a given function space to arbitrary
precision [6, 7]. In the equivariant setting, however, this notion must be refined. This is because such
models treat symmetric inputs as indistinguishable; they can only approximate functions compatible
with the underlying symmetry, subject additionally to spurious constraints arising from the imperfect
interactions between equivariance and linear inductive biases on neural network layers. In this context,
universality becomes inherently relative—defined with respect to a particular separation relation that
circumscribes the model’s ability to distinguish inputs.

Graph learning has served as a primary testbed for studying invariant and equivariant architectures,
where models are typically required to respect node permutation symmetries [4, 8, 9]. Within this
setting, separation power is most commonly assessed using the Weisfeiler-Leman (WL) test [10]
or homomorphism counting techniques [11]. A whole range of architectures—including Graph
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Neural Networks (GNNs) [12–14], Invariant Graph Networks (IGNs) [4, 15], and subgraph-based
models [16, 9]—have been analyzed through this lens. More recently, investigations analyzing
separation power have been extended beyond graph-structured data to broader classes of equivariant
models [17, 18]. While much of the literature in geometric deep learning has centered on separation
as the primary metric of expressivity, recent work [19, 20] has called for a more comprehensive view
that includes approximation capabilities more generally. The role of equivariant layers in determining
approximation power remains underexplored. Typically, these are composed to increase the model’s
separation capacity, while a universal component—such as a multilayer perceptron with adjustable
width—is appended to approximate functions within the separation-constrained class. As a result,
universality is achieved only relative to the distinctions introduced by the equivariant backbone.
However, there is no general theory describing how equivariant layers themselves contribute to
approximation.

To address this gap, we examine the approximation capabilities of equivariant neural networks beyond
what is captured by separation constraints alone. For this purpose, it suffices to focus on invariant
architectures, as the core phenomena extend to the equivariant setting. Indeed, projecting the output
of an equivariant model onto the trivial representation yields an invariant network. Accordingly,
our analysis of invariant networks provides insight into the approximation limits of a broad class of
equivariant architectures. We begin by showing that invariant neural networks can be expressed as
function that vanishes on certain differential operators (Section 5.1). This formulation allows us to
derive sufficient conditions under which a shallow invariant network fails to be universal within the
class of separation-constrained continuous functions (Section 5.2).

Our theory and analysis leads to three key insights. First, remarkably, we identify network families
that possess identical separation power yet differ in their approximation capabilities—demonstrating
that separation alone does not fully characterize expressivity. In particular, we show that shallow
networks composed of commonly used equivariant layers—such as PointNets and CNNs with
filter width 1—fail to be universal, despite matching the separation power of permutation-invariant
continuous functions (Section 6.1). Second, this implies that the only two architectural choices that
impact approximation power are depth and the type of hidden representations, the latter being strongly
influenced by the structure of the symmetry group. Third, we show that a generalization of the results
by [5] produces a broad family of shallow models that are universal within the separation-constrained
function class (Section 6.2). However, these constructions fundamentally rely on the structure of the
symmetry group. In particular, on the existence of normal subgroups of suitable size, a condition that
is not always met, as is the case for key symmetry groups such as the permutation group.

We summarize the main contributions of this work as follows:

• We characterize the universality classes of shallow invariant networks (Theorem 13).

• We establish general sufficient conditions under which universality fails, even within function
classes exhibiting maximal separation (Theorem 14 and Theorem 15).

• Leveraging these results, we construct explicit examples of invariant models that attain
maximal separation yet fail to be universal, demonstrating that separation is not sufficient to
guarantee universality (Proposition 16).

• We generalize the results by Ravanbakhsh [5] to a broader family of models (Theorem 18).

2 Related Work

Classical approximation theory for neural networks has established foundational results for shallow
architectures with sigmoidal activations [6, 7, 21]. Necessary and sufficient conditions on activation
functions were later given by Leshno et al. [22], and further refinements appear in Pinkus [23]. For
general treatments of approximation theory in modern neural networks, we refer to [24, 25].

Moving beyond shallow networks, Yarotsky [26, 27] proved fundamental results on the approximation
rates of deep neural networks, while Siegel [28] derived sharp bounds for deep ReLU networks.
These results establish that deep networks are not only universal under mild assumptions but also
more parameter-efficient than their shallow counterparts, approximating complex functions with
significantly fewer parameters.
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Equivariant neural networks offer a principled way to encode symmetry into learning architectures [1–
3], with early applications across physics [29], chemistry [30], biology [31], and computer vision [32].
Beyond the foundational work of Yarotsky [33], universality in equivariant and invariant settings has
been studied from multiple perspectives. A number of works [5, 34–36] establish universality for
certain shallow equivariant networks using unconstrained hidden representations. Keriven and Peyré
[37] extended this analysis to graph neural networks. However, these constructions typically rely on
high-dimensional intermediate representations, limiting their practical relevance.

A complementary line of work examines permutation-equivariant networks over multisets. Zaheer
et al. [38], Qi et al. [39], Segol and Lipman [40] prove universality for such models under constrained
hidden representations, but their results are restricted to architectures of depth three. As a result, the
universality of truly shallow networks—those with depth two or less—remained unresolved.

In this work, we address this gap and show that certain shallow equivariant networks are not universal
in the space of equivariant functions. This stands in contrast to the fully connected case, where
universality holds generically, and highlights that depth can play a qualitatively different role in
equivariant architectures, extending beyond parameter efficiency to approximation capacity itself.

To capture practical models within a theoretical framework, recent work has shifted toward studying
universality up to separation. In permutation-equivariant networks, expressivity has been analyzed
through the Weisfeiler–Leman (WL) hierarchy [41–43], with refinements based on homomorphism
counts and subgraph-aware techniques [44, 45]. Joshi et al. [17] extended this approach to geometric
domains, deriving depth-sensitive universality results under representation and separation constraints.
Most recently, Pacini et al. [18] characterized the separation power of neural networks for general
finite groups and permutation representations. While these works elucidate distinguishability, they do
not fully account for approximation behavior.

The role of equivariant layers in approximation, beyond their contribution to separation, remains
only partially understood. In practice, such layers are often composed to enhance separation power,
followed by a universal component—typically an MLP—to approximate functions within the induced
separation class. In the invariant case, this composition can yield universality. In the equivariant case,
however, universality is not guaranteed and is only known to hold in specific instances [40]. Thus,
the expressive power of the overall model remains fundamentally limited by the separation achieved
by the equivariant stack. Yet equivariant layers may also contribute directly to approximation, and in
some cases are known to suffice for universality within a fixed separation class [5].

Our work provides a detailed analysis of the universality classes of shallow equivariant networks.
We show that equivariant layers are not always sufficient to guarantee universality up to separation,
and that separation alone is not a complete proxy for approximation. We show explicit examples
of models with identical separation power but differing approximation capacity. More broadly,
we introduce general techniques for comparing the approximation power of equivariant models
beyond separation, offering a more refined and complete understanding of expressivity in symmetry-
constrained architectures.

3 Preliminaries

3.1 Groups and Equivariance

We are interested in functions that exhibit symmetry under specified transformations. Mathematically,
such symmetries are described by groups: sets of transformations closed under composition, equipped
with inverses and an identity element. While group theory offers a rigorous algebraic framework
for analyzing symmetry, applying these ideas within neural networks requires their reformulation
in linear-algebraic terms. This translation is achieved via representation theory, which associates
abstract group elements with matrix actions on vector spaces. For a brief overview, see Appendix A;
for a more detailed treatment, see [46].

Our focus will be on permutation representations, which naturally arise when a group G acts on a finite
set X . Let RX denote the space of real-valued functions on X . For each x ∈ X , define ex ∈ RX as
the function taking value 1 at x and 0 elsewhere. The set {ex}x∈X forms a canonical basis for RX . A
permutation representation of G on V = RX is a linear action satisfying g(ex) = egx for all g ∈ G
and x ∈ X . If V and W are permutation representations of G, a map ϕ : V → W is G-equivariant if
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ϕ(gv) = gϕ(v) for all g ∈ G and v ∈ V . We denote by Hom(V,W ) the space of linear maps from
V to W , and by HomG(V,W ) the subspace of G-equivariant linear maps. Similarly, let Aff(V,W )
denote the space of affine maps from V to W , and AffG(V,W ) the subspace of G-equivariant affine
maps. The spaces Hom(V,W ), Aff(V,W ), and their equivariant counterparts are real vector spaces
under pointwise addition and scalar multiplication. A result from Pacini et al. [47] shows that any
map f ∈ Aff(V,W ) admits a unique decomposition of the form f = τv ◦ϕ for some v ∈ W and
ϕ ∈ Hom(V,W ), where τv(w) = w + v. Such a map is G-equivariant iff ϕ is G-equivariant and
v ∈ WG = {v ∈ W | gv = v;∀g ∈ G}, the fixed-point subspace of W . In particular, there is a
linear morphism λ : AffG(V,W ) → HomG(V,W ) that projects an affine map to its linear part.

3.2 Equivariant Neural Networks

With all necessary definitions in place, we now introduce the notion of an equivariant neural network.
Throughout this work, we consider networks that are equivariant under the action of a finite group,
using arbitrary point-wise continuous activation functions, and with layers that transform according
to permutation representations. We adopt the notation introduced by Pacini et al. [18].

Definition 1 (Point-wise Activation). Let σ : R → R be a nonlinear activation function, and let RX

denote a permutation representation of a group G. We define the corresponding point-wise activation
σ̃ : RX → RX by setting σ̃

(∑
x∈X αxex

)
=
∑

x∈X σ(αx)ex. When no confusion arises, we will
denote both σ and σ̃ by the same symbol.
Definition 2 (Neural Networks and Neural Spaces). Let G be a group, and let V0, . . . , Vd be
permutation representations of G. For each i = 1, . . . , d, let Mi ⊆ AffG(Vi−1, Vi) be a set of
G-equivariant affine maps. For d ≥ 2, the neural space associated with the layers M1, . . . ,Md and a
point-wise activation function σ is defined recursively by

N σ(M1, . . . ,Md) =
{
ϕd ◦ σ̃ ◦ ηd−1

∣∣ϕd ∈ Md, η
d−1 ∈ N σ(M1, . . . ,Md−1)

}
,

with the base case N σ(M1) = M1. An element ηd ∈ N σ(M1, . . . ,Md) is called a neural net-
work with layers in M1, . . . ,Md and activation σ. When each Mi is taken to be the full space
AffG(Vi−1, Vi), we write N σ(V0, . . . , Vd) as shorthand for N σ(M1, . . . ,Md).

To capture architectures commonly used in practice, we adopt a more structured form for the layer
spaces M ⊆ AffG(V,RX), as proposed in Section 4.2 of Pacini et al. [18]. Specifically, we assume
that M takes the form

M =

v 7→
k∑

i=1

xiϕ
i(v) +

ℓ∑
j=1

yj1Xj

∣∣∣∣∣∣ x1, . . . , xk, y1, . . . , yℓ ∈ R

 , (1)

where ϕ1, . . . , ϕk span a subspace of HomG(V,RX), X1, . . . , Xℓ are the orbits of X under the
G-action, and 1Xi

:=
∑

x∈Xi
ex for i = 1, . . . , ℓ. This formulation, while notation-heavy, plays a

central role in the development of our main results.

We now present two working examples of equivariant affine maps and their associated neural spaces.
These examples both reflect architectures commonly used in geometric deep learning and illustrate
how standard models naturally conform to the structure in (1). They will serve as recurring reference
points throughout to highlight key phenomena in the universality landscape of equivariant networks.
Example 3 (PointNets). We focus on the sum-pooling variant of PointNet architectures [39], which
are designed to process unordered collections, such as point clouds, by enforcing permutation
equivariance. An input configuration of n elements with f -dimensional features is represented by
a tensor A ∈ Rn×f , where each row corresponds to the features of a single object. Permuting the
elements corresponds to permuting the rows of A, i.e., the indices along its first axis. In our framework,
the input tensor A is modeled as an element of RX ⊗Rf , where X = [n] and the symmetric group
G = Sn acts on X via its standard action and trivially on Rf . PointNet architectures operate on
such inputs using layers in the space AffSn

(RX ⊗Rfi−1 ,RX ⊗Rfi), where each Rfi corresponds
to a space of Sn-invariant hidden features. Accordingly, the neural spaces corresponding to these
equivariant architectures and their invariant counterparts take the following forms, respectively:

Nσ(RX0 ⊗Rf0 , . . . ,RXd ⊗Rfd) and Nσ(RX0 ⊗Rf0 , . . . ,RXd−1 ⊗Rfd−1 ,Rfd).
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Zaheer et al. [38] showed that understanding the structure of AffSn(R
X ⊗Rfi−1 ,RX ⊗Rfi) reduces

to understanding AffSn
(RX ,RX). Identifying RX with Rn, they established that

AffSn
(Rn,Rn) =

{
v 7→ (x1 id + x2 11

⊤)v + y1
∣∣ x1, x2, y ∈ R

}
,

where 1 = 1[n] = [1, . . . , 1]⊤. In the invariant case, AffSn
(Rn,R) =

{
v 7→ x1⊤v + y

∣∣ x, y ∈ R
}

,
which is consistent with the notation introduced in (1).
Example 4 (Convolutional Neural Networks). Circular convolutional filters can be naturally for-
mulated within the framework of permutation representations. For simplicity, we focus on the
one-dimensional case. Let X = [n] and let G = Zn act on X by modular shifts. Identifying RX

with Rn, the space HomZn(R
n,Rn) corresponds to circulant matrices A(x), each determined by a

generating vector x = (x1, . . . , xn) ∈ Rn, as shown below.

Each map in AffZn
(Rn,Rn) consists of a linear part defined by a circulant matrix and a bias term in

Rn:

A(x) :=


x1 xn xn−1 · · · x2

x2 x1 xn · · · x3

x3 x2 x1 · · · x4

...
...

...
. . .

...
xn xn−1 xn−2 · · · x1

 and y1X = y1[n] = y

1...
1

 .

Observe that any circulant matrix A(x) can be written as a linear combination A(e1), . . . , A(en),
that is, A(x) =

∑n
i=1 xiA(ei) where {e1, . . . , en} denotes the standard basis of Rn. Since limited-

width convolutional filters are standard in practice, we restrict attention to the following maps:

Ck =

{
v 7→

k∑
i=1

xiA(ei)v + y1[n]

∣∣∣∣∣ x1, . . . , xk, y ∈ R

}
. (2)

This class can be seen as the one-dimensional analogue of the k×k convolutional kernels widely used
in 2-D computer vision applications. The corresponding neural space is given by N σ(C

k1 , . . . , Ckd),
for a choice of filter sizes 1 ≤ k1, . . . , kd ≤ n. Circular invariant layers can be characterized as

I := AffZn
(Rn,R) =

{
v 7→ (x1⊤) · v + y

∣∣ x, y ∈ R
}
. (3)

In particular, we will focus on the spaces C1, which correspond to convolutional filters of width one.

Having detailed the structure of the layer spaces and their correspondence to practical architectures,
we now turn to the study of universality in families of shallow neural spaces.

4 Universality in Shallow Neural Spaces

Universality Classes. To establish notation and introduce the notion of universality classes, we begin
by reformulating the classical universality result for shallow neural networks [23] in terms of our
framework. Observe that the full class of shallow neural networks with variable width can be written
as
⋃

h∈N N σ(Rm,Rh,R). We denote by Uσ(Rm,R,R) the associated universality class—namely,
the set of continuous functions on Rm approximable by such networks. Formally, Uσ(Rm,R,R) is
defined as the closure of this union in C(Rm), equipped with the topology of uniform convergence on
compact sets.
Theorem 5. The universality class for shallow neural networks, Uσ(Rm,R,R), coincides with
C(Rm) if and only if the activation function σ is not a polynomial.

An analogous result in the equivariant setting was established by Ravanbakhsh [5] for neural networks
defined on representations V and W as input and output spaces, respectively, and with regular
hidden representations of the form RG. We define the universality class Uσ(V,RG,W ) as the set of
functions in C(V,W ) that can be approximated by elements of

⋃
h∈N N σ(V,RG ⊗Rh,W ). Note

that, in analogy with classical networks, the role of width is played by the hyperparameter h, which
determines the dimension of the invariant hidden representation. The results of Ravanbakhsh [5] can
then be stated as follows.
Theorem 6. The universality class Uσ(V,RG,W ) coincides with CG(V,W ), the space of continuous
G-equivariant functions from V to W , if and only if the activation function σ is not a polynomial.
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We aim to provide a definition of universality classes that encompasses the notions introduced in
Theorem 5 and Theorem 6, while being general enough to cover a wider range of architectures, such
as PointNets and CNNs with variable filter size. To this end, we introduce the following auxiliary
notation. Let G be a finite group and let V , W and Z be permutation representations of G. Let M
be a subspace of AffG(V,W ) and N a subspace of AffG(W,Z), as defined in (1). Then, for each
h ∈ N, we define Mh as the subspace of AffG(V,W ⊗ Rh) given by

Mh := {x 7→ (f1(x), . . . , fh(x)) | f1, . . . , fh ∈ M} , (4)

and define Nh as the subspace of AffG(W ⊗ Rh, Z) given by

Nh := {(x1, . . . , xh) 7→ g1(x1) + · · ·+ gh(xh) | g1, . . . , gh ∈ N} . (5)

Recalling the isomorphism W⊗Rh ∼= (W )⊕h, note that in the special cases where M = AffG(V,W )

and N = AffG(W,Z), we have Mh
∼= AffG(V,W ⊗ Rh) and Nh

∼= AffG(W ⊗ Rh, Z). With this
notation in place, we can now provide a general definition of universality classes.
Definition 7 (Universality Classes). The universality class Uσ(M,N) associated with a family of
neural spaces N σ(Mh, Nh) for h ∈ N is the set of continuous functions approximated by these neural
networks. More formally, Uσ(M,N) is defined as the closure of

⋃
h∈N N σ(Mh, Nh) in C(V,Z),

equipped with the topology of uniform convergence on compact sets. As in the case of neural spaces,
when M = AffG(V,W ) and N = AffG(W,Z), we will simply write Uσ(V,W,Z).

However, comparing different universality classes is particularly challenging, and in the literature,
separation power has often been used as a proxy for this purpose. The next section revisits this notion
and critically examines its adequacy as a surrogate for universality.

On Separation-Constrained Universality. Theorem 6 establishes that equivariant neural networks
cannot approximate all continuous functions. In particular, invariant networks are inherently unable
to distinguish between symmetric inputs—a limitation that naturally constrains the class of functions
they can represent. To make this precise, we formally define the notion of separation and the concept
of separation-constrained universality.
Definition 8 (Separation-Constrained Universality). A family of functions N ⊆ {f : X → Y } is
said to separate α and β if there exists f ∈ N such that f(α) ̸= f(β). The set of point pairs not
separated by N defines an equivalence relation:

ρ(N ) = {(α, β) ∈ X ×X | f(α) = f(β) for all f ∈ N}.
A family N is said to be separation-constrained universal if its relative universality class coincides
with the entire set of continuous functions that respect the equivalence relation ρ(N ), that is,

Cρ(X,Y ) = {f ∈ C(X,Y ) | f(x) = f(y) for all (x, y) ∈ ρ(N )}.

It is a standard fact in approximation theory [48] that if a family of functions N fails to separate
two points, then it cannot approximate any function that does. As such, separation-constrained
universality captures the maximal expressivity achievable by N . Here, we aim to investigate whether
separation alone suffices to characterize expressivity i.e., whether universality classes with the same
separation power must necessarily coincide. To this end, we now present three network families that
share the same separation relation, despite differing in their internal representations. Throughout the
remainder of the paper, we assume that all activation functions σ : R → R are non-polynomial.
Proposition 9. 5 Let C1 be defined as in (2), representing convolutional filters of width 1, and let I be
as defined as in (3), representing invariant circular layers. Let Sn act on Rn ∼= R[n] via the standard
permutation action. Then, the following universality classes have the same separation power:

ρ
(
Uσ(C

1, I)
)
= ρ (Uσ(Rn,Rn,R)) = ρ

(
Uσ(Rn,RSn ,R)

)
.

This naturally raises the following question.
Question 10. Are these universality classes equal as well? More generally, is separation a complete
proxy for comparing universality classes?

We answer Question 10 in the negative via Proposition 16, after developing the necessary theory.
5For clarity of presentation, all proofs are deferred to the Appendix, with the exception of Proposition 16.
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5 Main Results

In this section, we characterize the universality classes of invariant shallow neural networks (Sec-
tion 5.1) and compare them (Section 5.2). Although this may appear restrictive, the following remark
shows that non-approximation in the invariant setting implies failure in the equivariant case as well.
Remark 11. Let U1 ⊆ U2 ⊆ CG(V,W ) be two universality classes with input space V and output
space W . Let π : W → WG denote the projection onto the trivial component of W . Define the
pullback map

π∗ :
CG(V,W ) −→ CG(V,W

G)
f 7−→ π ◦ f,

where CG(V,W ) denotes the space of continuous equivariant functions from V to W . Then,
π∗(U1) ⊊ π∗(U2) implies U1 ⊊ U2, since π∗ is a continuous linear operator. This shows that
a sufficient condition for strict inclusion between spaces of invariant networks also yields a sufficient
condition for strict inclusion between the corresponding spaces of equivariant networks.

With this observation, we now restrict our attention to invariant networks without loss of generality.

5.1 Characterization of Universality Classes

To characterize the universality classes of invariant shallow networks, we begin by introducing the
notion of a basis map.
Definition 12 (Basis maps). As defined in (1), let M be a subspace of AffG(V,RY ), where V is a
permutation representation and Y is a finite G-set of cardinality ℓ, which we identify with [ℓ]. Let
ϕ1, . . . , ϕm be a basis for the linear part of M , and for each i ∈ Y , define the linear maps

ϕi :
RX → Rm

x 7→ (ϕ1
i (x), . . . , ϕ

m
i (x)).

(6)

We refer to the maps ϕ1, . . . , ϕℓ as the basis maps associated with M or its basis ϕ1, . . . , ϕm.

We now state the central characterization theorem for universality classes in terms of differential
constraints on invariant functions.
Theorem 13. Let M and N be, respectively, subspaces of AffG(V,W ) and AffG(W,R). Let f be
an invariant function, then f ∈ Uσ(M,N) if and only if P (∂1, . . . , ∂d)f = 0 for every polynomial P
that vanishes on the spaces spanned by the rows ϕ1

i , . . . , ϕ
m
i of each basis map ϕ1, . . . , ϕℓ, see (6).

Here, we assume d = dimV , and let P (∂1, . . . , ∂d) denote the constant-coefficient linear differential
operator associated with the polynomial P . The derivatives ∂i on V are interpreted in the distributional
sense; see [49] for details.

Although Theorem 13 provides a complete characterization of the universality classes for arbitrary
families of neural spaces, this generality may come at the cost of practicality. Indeed, computing
the exact set of polynomials P can be particularly challenging, due to the combinatorial complexity
arising from the intersections of the subspaces spanned by ϕ1

i , . . . , ϕ
m
i . Nonetheless, the theorem

is not merely of theoretical interest—it plays a central role in deriving sufficient conditions for
universality failure. These conditions enable a principled comparison of the approximation power of
distinct model families, as we explore in the following sections.

5.2 Sufficient Conditions for Universality Failure

In this section, we present two sufficient conditions for the failure of separation-constrained uni-
versality. These results will be used to resolve Question 10 and to prove Proposition 16. We begin
with Theorem 14, which provides a general—but more difficult to verify—criterion, followed by
Theorem 15, a less general version that is simpler to apply, despite its more convoluted appearance.

First, we introduce the notion of a directional derivative. For each vector c = (c1, . . . , cn) ∈ Rn, the
directional derivative is defined as the differential operator Dc = c1 · ∂1 + · · ·+ cn · ∂n.
Theorem 14. A continuous function f does not belong to the class Uσ(M,N) if

Dc1 · · ·Dcℓf ̸= 0 (7)

for some choice of cα in ker(ϕ⊤
α ) for each basis map ϕ1, . . . , ϕℓ.
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In the case of equivariant networks where each affine layer is allowed to be an arbitrary equivariant
affine map, Theorem 14 can be strengthened as follows.
Theorem 15. Let M = AffG(V,W ) and N = AffG(W,R), where V and W are permutation
representations. Let ϕ1, . . . , ϕℓ denote the basis maps associated with M , see (6). Then, the
universal class Uσ(M,N) fails to be separation-constrained universal if, for some choice of:

• integers s1, . . . , sℓ ∈ {0, . . . , ℓ} satisfying s1 + · · ·+ sℓ = ℓ,

• integers a1 > ℓ and ai + ℓ < ai+1 for each i = 1, . . . , ℓ,

• vectors ci ∈ ker(ϕ⊤
i ) for each i = 1, . . . , ℓ,

Let i1, . . . , ir be the indices such that sij ̸= 0. The following expression is nonzero:∑
σ∈Sℓ

ai1 !

si1 !
· · · air !

sir !
(cσ(1),1 · · · cσ(s1),1) · (cσ(s1+1),2 · · · cσ(s1+s2),2) · · · (cσ(ℓ−sℓ),ℓ · · · cℓ,ℓ).

6 The Heterogeneous Landscape of Universality Classes

We now apply the tools developed in Section 5 to investigate the structure of universality classes and
illustrate their heterogeneity. In Section 6.1, we address Question 10 by applying Theorems 14 and 15
to exhibit concrete examples of failure. In contrast, Section 6.2 presents Theorem 18, a generalization
of Theorem 6, which provides sufficient conditions for achieving separation-constrained universality—
highlighting the diversity of behaviors even within fixed symmetry classes.

6.1 Examples of Failure

Proposition 16. As established in Proposition 9, the following spaces achieve the same separation
power, yet differ in their approximation capabilities when n > 2:

Uσ(C
1, I) ⊊ Uσ(Rn,Rn,R) ⊊ Uσ(Rn,RSn ,R).

By Remark 11, the corresponding equivariant models also have distinct approximation power.

We will prove the two strict inclusions of Proposition 16 in the following three paragraphs.

Failure for CNN with filter width 1: We now apply Theorem 14 to show that CNNs with filter width
1 cannot approximate the function (x1+ · · ·+xn)

n for n > 1, namely (x1+ · · ·+xn)
n /∈ Uσ(C

1, I).
Indeed, for any α = 1, . . . , n, we have eα+1 ∈ ker(π⊤

α ) = Span{e1, . . . , êα, . . . , en}, where α+ 1
is modulo n. Moreover, note that Deα = ∂α, thus ∂n · · · ∂1(x1 + · · · + xn)

n = n! ̸= 0, which
violates (7) in Theorem 14.

Success for PointNet: We now show that shallow PointNets approximate the polynomial function
(x1+ · · ·+xn)

n. By Proposition 40 in Appendix D, f(x1, x1+ · · ·+xn)+ · · ·+f(xn, x1+ · · ·+xn)
belongs to Uσ(Rn,Rn,R) for any f ∈ C(R2). In particular, for f(x, y) := yn ∈ C(R2), we see that
(x1 + · · ·+ xn)

n ∈ Uσ(Rn,Rn,R). Together with the previous observation, this establishes the first
strict inclusion in Proposition 16, namely Uσ(C

1, I) ⊊ Uσ(Rn,Rn,R).
Failure for PointNet: We now aim to show that shallow PointNets cannot approximate the polynomial
function x1 · · ·xn, which is Sn-invariant and therefore should, in principle, be approximable in a
separation-constrained setting. We distinguish two cases: n > 3 and n = 3. Note that for n = 2, the
symmetric group S2 is abelian, and universality follows directly from Theorem 6.
We start considering (n > 3). We again employ Theorem 14 to show that shallow invariant PointNets
cannot approximate x1 · · ·xn, and hence neither CNNs with filter width 1. Indeed, note that the basis
maps for AffSn

(Rn,Rn) in this case are given by ϕα(x1, . . . , xn) = (xα, x1 + · · ·+ xn). In matrix
form, we write ϕα = [eα,1]

⊤. We define Kα := ker
(
ϕ⊤
α

)
= Span(ei − ej)i,j=1,...,α̂,...,n. Then,

define the following direction vectors:
c1 := e2 − en ∈ K1, c2 := e3 − en ∈ K2,

...
cn−3 := en−2 − en ∈ Kn−3, cn−2 := en−1 − en ∈ Kn−2,

cn−1 := en − e2 ∈ Kn−1, cn := e1 − e2 ∈ Kn.

8



Explicit computation shows that Dcn · · ·Dc1(x1 · · ·xn) = 2, verifying (7).
The previous technique does not apply in the case n = 3, for which we must instead resort to
Theorem 15. First, define c1 := e2 − e3 ∈ K1, c2 := e3 − e1 ∈ K2, and c3 := e1 − e2 ∈ K3.
Note that ci,i = 0 for each i = 1, 2, 3. For s1 = 2, s2 = 1, and s3 = 0, the polynomial becomes
a1(a1 − 1)a2 · [c3,1 · c2,1 · c1,2] = −a1(a1 − 1)a2 ̸= 0 by choosing a1, a2 > 3.

In view of the universality results for PointNet with depth 3 and arbitrary widths in both hidden layers
by Segol and Lipman [40], this example highlights how, in the case of permutation equivariance,
depth is crucial for achieving separation-constrained universality. This contrasts with other settings
where universality can be achieved without relying on depth, as we will describe in the next section.

6.2 Examples of Separation-Constrained Universality

We now present Theorem 18, a generalization of Theorem 6, which shows that a specific class of
hidden representations can achieve separation-constrained universality. These representations arise
from cosets of particular subgroups H of G, defined as follows:
Definition 17 (Normal subgroup). A subgroup H is normal if ghg−1 ∈ H for each h ∈ H, g ∈ G.
Theorem 18. Let V and Z be permutation representations of a finite group G, and let H be a normal
subgroup of G. Therefore, Uσ(V,RG/H , Z) is separation-constrained universal.

All subgroups of an abelian group are normal, whereas Sn has only one non-trivial normal subgroup,
An, with |Sn/An| = 2, yielding hidden representations that are too small to be effective. Therefore,
intermediate representations built from abelian groups, such as in standard circular CNNs, achieve
separation-constrained universality. In contrast, architectures based on permutation representations
lack this guarantee, as shown by Proposition 16.

7 Limitations

This work represents a first step toward understanding the approximation capabilities of equivariant
networks beyond separation. Several limitations, however, remain. First, the normal subgroup condi-
tion in Theorem 18 offers a sufficient criterion for separation-constrained universality, but whether
it is also necessary remains an open question. Second, our analysis is limited to shallow networks.
While these serve as minimal and analytically tractable examples, they may not fully capture the
behavior of deeper architectures. Extending this framework to deeper networks—particularly in
settings where depth interacts nontrivially with separation, as in IGNs—poses a significant challenge.

8 Conclusions

We investigated the approximation capabilities of equivariant neural networks, moving beyond
their well-studied separation properties. By formulating shallow invariant networks as generalized
superpositions of ridge functions, we developed a novel characterization of their universality classes
and examined how architectural choices influence approximation behavior. Our analysis reveals
that even networks with maximal separation power may fail to approximate all functions within
the corresponding symmetry-respecting class, a phenomenon we attribute to the structure of their
hidden representations. These findings suggest that approximation power cannot be deduced from
separation alone and should be treated as a distinct axis of expressivity. Our results thus call for a
more nuanced understanding of equivariant architectures—one that takes both axes into account in
theoretical analysis and model design.

As future directions, we aim to extend our framework to determine whether failures of separation-
constrained universality, such as those established in Proposition 16, persist in deeper architectures.
Another important avenue for investigation is how differences in expressivity affect generalization,
particularly among models that share the same separation power.
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A Preliminaries

A.1 Group Theory

Definition 19 (Group). A group is a set G equipped with a binary operation · : G×G → G satisfying
the following properties:

• Associativity: for all g, h, k ∈ G, we have (g · h) · k = g · (h · k).

• Identity element: there exists an element e ∈ G such that g · e = e · g = g for every g ∈ G.

• Inverses: for every g ∈ G, there exists an element g−1 ∈ G such that g · g−1 = g−1 · g = e.

The group is said to be finite if G contains finitely many elements. It is called abelian (or commutative)
if g · h = h · g holds for all g, h ∈ G.

We now define the concept of a group homomorphism, a structure-preserving map between groups.
Definition 20 (Homomorphism). Let G and H be groups. A function ϕ : G → H is called a group
homomorphism if, for all g, h ∈ G, it holds that

ϕ(g · h) = ϕ(g) · ϕ(h).
Definition 21 (Cosets). Let G be a group and let H ≤ G be a subgroup. The left coset of H
associated with an element g ∈ G is the set

gH = {gh | h ∈ H}.
The collection of all left cosets of H in G is denoted by G/H = {gH | g ∈ G}.

Similarly, the right coset of H corresponding to g ∈ G is defined as
Hg = {hg | h ∈ H},

and the set of all left cosets is written as G/H = {gH | g ∈ G}.

Given another subgroup K ≤ G, the double coset associated with g ∈ G is the set
HgK = {hgk | h ∈ H, k ∈ K},

and the set of all such double cosets is denoted by H\G/K.
Definition 22 (Normal subgroup). A subgroup H is normal if ghg−1 ∈ H for each h ∈ H, g ∈ G.
Example 23. We highlight two families of normal subgroups relevant to our discussion:

1. All subgroups of abelian groups are normal.

2. The alternating group An is the only non-trivial normal subgroup of Sn.
Theorem 24. If H is a normal subgroup of G, then the cosets G/H for a group, where the binary
operation is defined as g1H · g2H = g1g2H .

A.2 Group Actions and Equivariance

Let G be a group and let X be a set. A group action of G on X is a map
Φ : G×X → X,

commonly written as ϕg(x) = Φ(g, x) for g ∈ G and x ∈ X , that satisfies the following two
conditions:

• Identity: ϕe = idX , where e is the identity element in G.
• Compatibility: For all g, h ∈ G, we have ϕg ◦ ϕh = ϕgh.

In practice, we often denote the action by g · x or simply gx in place of ϕg(x).

A set X endowed with a group action of G is referred to as a G-set. That is, X is a G-set if there
exists a well-defined action · : G × X → X satisfying the identity and compatibility conditions
above.

Another fundamental notion for our analysis is that of a map between G-sets that respects the group
action. This leads to the definition of equivariance.
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Definition 25 (Equivariance). Let X and Y be G-sets. A function f : X → Y is said to be
G-equivariant if, for all g ∈ G and x ∈ X , the following condition holds:

f(g · x) = g · f(x).

A.3 Group Representations and Equivariant Affine Transformations

Let G be a group and V be a vector space over a field R. A G-action Φ : G × V → V on V is
G-representation if ϕg is linear for each g in G. Or equivalently,

ϕ :
G → GL(V )

g 7→ ϕg

where GL(V ) is the general linear group of V , consisting of all invertible linear transformations on
V . We will usually identify the entire Φ : G× V → V action with V itself and write gv = Φ(g, v).

Let V and W be two G-representations, we will indicate the set of equivariant linear maps be-
tween V and W as HomG(V,W ) and as AffG(V,W ) the set of equivariant affine maps. Note that
HomG(V,W ) is a vector space. Indeed, 0 ∈ HomG(V,W ) and for each f, g ∈ HomG(V,W ) and
each α, β ∈ R, αf + βg ∈ HomG(V,W ). The same is true for AffG(V,W ).

Let V be a G-representation, we define the set of invariant vectors V G = {v ∈ V | gv = v ∀g ∈ G}.

A.4 On Permutation Representations

Definition 26. Let X be a finite set and let G be a finite group acting on X . A permutation
representation of G is the linear action of G on the space RX defined by

g(ex) = eg·x for all g ∈ G, x ∈ X,

where {ex}x∈X denotes the standard basis of RX .
Proposition 27. Let X and Y be G-sets. Then, the following G-equivariant isomorphisms of
representations hold:

RX⊔Y ∼= RX ⊕RY and RX×Y ∼= RX ⊗RY ,

where X ⊔ Y denotes the disjoint union and X × Y the Cartesian product of the two sets.

B On Commutative Algebra

For a general introduction to commutative algebra, we refer to Atiyah and MacDonald [50]. Here,
we recall the notation necessary to prove Theorem 13, 14 and 15.

Let R[x1, . . . , xn] denote the set of polynomials in the variables x1, . . . , xn.
Definition 28 (Ideal). An ideal I of R[x1, . . . , xn] is a subset such that, if f ∈ I , then p · f ∈ I for
every p ∈ R[x1, . . . , xn]. If X ⊆ Rn, we define

I(X) = {f ∈ R[x1, . . . , xn] | f(x) = 0 ∀x ∈ X}.

Definition 29 (Product of Ideals). Let I, J ⊆ R[x1, . . . , xn] be ideals. Their product I · J , or simply
IJ , is the ideal defined by

IJ =

{
r∑

k=1

fkgk | fk ∈ I, gk ∈ J, r ∈ N

}
.

Definition 30 (Generators of an Ideal). Let R = R[x1, . . . , xn] be the set of polynomial and let
f1, . . . , fm ∈ R. The ideal generated by f1, . . . , fm is the set

(f1, . . . , fm) =

{
m∑
i=1

hifi | hi ∈ R

}
.

We say that f1, . . . , fm are generators of the ideal.
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Proposition 31. If X is a linear subspace of Rn such that its orthogonal complement X⊥ is spanned
by vectors v1, . . . , vd, then

I(X) = (v⊤1 · x, . . . , v⊤d · x).

Proof. Indeed,
I(X) ⊇ (v⊤1 · x, . . . , v⊤d · x).

To prove the reverse inclusion, observe that—up to a change of coordinates—we may assume
vi · x = xi for i = 1, . . . , d. In this case, any polynomial f(x) ∈ I(X) can be written as

f(x) = a1(x)x1 + · · ·+ ad(x)xd + b(x),

where ai(x) ∈ R[x1, . . . , xn] for each i = 1, . . . , d, and b(x) is a polynomial whose monomials do
not involve the variables x1, . . . , xd.

Now, since f vanishes on X = {x ∈ Rn : x1 = · · · = xd = 0}, it must be that b(x) = 0 identically.
Therefore, f(x) lies in the ideal generated by x1, . . . , xd, completing the proof.

Remark 32. The following are either standard results or direct consequences of the observations
above:

• The intersection and the product of ideals are themselves ideals.

• I(X1 ∪ · · · ∪Xℓ) = I(X1) ∩ · · · ∩ I(Xℓ).

• If X1, . . . , Xℓ are linear subspaces of Rn, then I(X1) · · · I(Xℓ) is generated by polynomials
of the form (v⊤1 · x) · · · (v⊤ℓ · x), where v1, . . . , vℓ are vectors respectively in X⊥

1 , . . . , X⊥
ℓ .

C On Superpositions of Ridge Functions

In this section, we present results on the theory of superpositions of generalized ridge functions. A
detailed exposition can be found in Pinkus [51].

Definition 33 (Superpositions of Generalized Ridge Functions). Given a linear map ϕ : Rn → Rd, a
generalized ridge functions is an element in

M(ϕ) :=
{
f ◦ ϕ | f ∈ C(Rd)

}
⊆ C(Rn).

Given Ω ⊆ Rd×n, a superposition of generalized ridge functions is an element in

M(Ω) := Span
{
f ◦ ϕ | f ∈ C(Rd), ϕ ∈ Ω

}
.

If Ω is finite, say Ω = {ϕi}i∈I , we may write

M(Ω) = M(ϕi)i∈I :=

{
x 7→

∑
i∈I

fi ◦ ϕi(x) | fi ∈ C(Rd)

}
,

or simply write M(ϕ1, . . . , ϕl) when Ω = {ϕ1, . . . , ϕl}.

To facilitate our exposition, we introduce the following auxiliary notation. Let A ∈ Rd×n be matrix,
and write it as

A :=

a1...
ad

 ,

where ais are the rows of A. Define

L(A) := Span {a1, . . . , ad} .

Let Ω ⊆ Rd×n be a finite set of matrices. Define

L(Ω) :=
⋃
A∈Ω

L(A).

In the following, we will use the following fundamental result (see [51], p. 65).
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Theorem 34. Let Ω = {A1, . . . , As} ⊆ Rd×n be a finite set of matrices. Then

M(Ω) = M(L(Ω)) = M(L(A1) ∪ · · · ∪ L(As)).

We can characterize the previous sets using the following notions.
Definition 35. Given Ω ⊆ Rn, define the ideal of polynomials vanishing on Ω as

I(Ω) := {p ∈ R[x1, . . . , xn] | p(x) = 0∀x ∈ Ω} ,
and then, define

C(Ω) := {p ∈ R[x1, . . . , xn] | q(D)p = 0∀q ∈ I(Ω)} .
Theorem 36 (Theorem 6.9 of [51]). In the topology of uniform convergence on compact subsets

M(Ω) = C(Ω).

We can compare the closure of spaces of superposition thanks to the following theorem.
Theorem 37. Let Ω and Ω′ be two subsets of Rn closed under scalar multiplication. If C(Ω) ⊊ C(Ω′),
then C(Ω) ⊊ C(Ω′) in topology of uniform convergence on compact sets.

Proof. If C(Ω) ⊊ C(Ω′) then there exist p′ ∈ C(Ω′) and q ∈ I(Ω) such that

q′(D) · p′ = 0, ∀q′ ∈ I(Ω′)

and
q(D) · p′ ̸= 0

for each p ∈ C(Ω). Note that q(D) is a continuous operator in the space of tempered distributions
and C(Ω) ⊆ ker q(D). Since ker q(D) is a closed subspace by Lemma 38, then C(Ω) ⊆ ker q(D)
while p′ /∈ ker q(D), concluding the proof.

Lemma 38. Let (pn)n∈N be a sequence of polynomials in d variables, each of arbitrary degree, that
converges uniformly on compact subsets to a polynomial p. Let P (∂1, . . . , ∂d) be a linear differential
operator with constant coefficients, that is, P is a polynomial in d variables. If

P (∂1, . . . , ∂d) pn = 0 for all n ∈ N,
then

P (∂1, . . . , ∂d) p = 0.

Proof. Define:

⟨f, g⟩ :=
∫
Rn

f(x)g(x)dx.

Let ϕ be a smooth function with support on a compact K. We know:

⟨pn, ϕ⟩ → ⟨p, ϕ⟩,
for n → ∞. Let Q(∂1, . . . , ∂d) be the adjoint operator of P (∂1, . . . , ∂d). This operator is still a
linear differential operator when defined on smooth functions with compact support. In particular,
Q(∂1, . . . , ∂d)ϕ is still a smooth function with support on K. Moreover,

⟨pn, Q(∂1, . . . , ∂d)ϕ⟩ = −⟨P (∂1, . . . , ∂d)pn, ϕ⟩ = 0 (8)

for each n. Due to convergence on compacts and knowing that the support of Q(∂1, . . . , ∂d)ϕ is K,
we obtain

⟨pn, Q(∂1, . . . , ∂d)ϕ⟩ → ⟨p,Q(∂1, . . . , ∂d)ϕ⟩, (9)
for n → ∞. Thanks to Eq. 8 e 9 we get:

⟨p,Q(∂1, . . . , ∂d)ϕ⟩ = 0.

Finally,
⟨P (∂1, . . . , ∂d)p, ϕ⟩ = −⟨p,Q(∂1, . . . , ∂d)ϕ⟩ = 0.

Since ϕ is an arbitrary smooth function with compact support, we get

⟨P (∂1, . . . , ∂d)p, ϕ⟩ = 0

for each ϕ with compact support. For the fundamental theorem of calculus of variations,
P (∂1, . . . , ∂d)p is identically zero.
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D Proofs and Auxiliary Results

In this section we will concentrate on a particular subset of superpositions of ridge functions, namely,
the symmetric ones.

Definition 39 (Symmetric Superpositions). Let ϕ1, . . . , ϕℓ : Rn → Rd be linear maps. We define
symmetric superpositions of ridge functions as follows:

∆(ϕ1, . . . , ϕℓ) :=
{
x 7→ f ◦ ϕ1(x) + · · ·+ f ◦ ϕℓ | f ∈ C(Rd)

}
.

Proposition 40. The family of functions approximated by Uσ(M,N) coincides with the class
∆(ϕ1, . . . , ϕℓ), where ϕ1, . . . , ϕℓ are the basis maps associate to M .

Proof of Proposition 40. In the general setting, write the linear parts of M and N respectively as
λ(M) = Span

{
ϕ1, . . . , ϕm

}
and λ(N) = Span

{
x 7→ 1

t ·x
}

. Elements in Mh can be represented
as affine maps x 7→ Bx+ c where B and c have the following block representations

B =

b1,1ϕ
1 + · · ·+ b1,mϕm

...
bh,1ϕ

1 + · · ·+ bh,mϕm

 and c =

c1 1...
ch 1

 .

While elements in Nh can be represented as affine maps x 7→ Ax+ d where d ∈ R and

A =

a1 1
t

...
ah 1

t

 .

Denote by ϕj
i the projection of the i-th component of the function ϕj . We can write elements

η ∈ N σ(Mh, Nh) as

η(x) = Aσ(Bx+ c) =

h∑
j=1

aj
∑
i∈Y

σ

(
m∑
t=1

bj,tϕ
t
i(x) + cj

)
for some ai, bj,t, cj ∈ R. But note that

η(x) =

h∑
j=1

aj
∑
i∈Y

σ

(
m∑
t=1

bj,tϕ
t
i(x) + cj

)
= (10)

∑
i∈Y

h∑
j=1

ajσ

(
m∑
t=1

bj,tϕ
t
i(x) + cj

)
=
∑
i∈Y

ζ(ϕ1
i (x), . . . , ϕ

m
i (x)) (11)

where

ζ(y1, . . . , yl) :=

h∑
j=1

ajσ

(
m∑
t=1

bj,tyt + cj

)
is a standard multilayer perceptron in N σ(Rl,Rh,R). Since, the the multilayer perceptron is
universal, thanks to (10) we can approximate any superposition in ∆(ϕ1, . . . , ϕl). Thus, we have

∆(ϕ1, . . . , ϕl) ⊆ Uσ(M,N).

On the other hand, by (10), ⋃
h∈N

N σ(Mh, Nh) ⊆ ∆(ϕ1, . . . , ϕl).

It follows that their closures coincide, which concludes the proof.

Let M be a vector space of affine maps such that λ(M) = Span
{
ϕ1, . . . , ϕm

}
, and let N be the set

of invariant affine maps. Denote ρ = ρ(N σ(M,N)). We denote by {{x1, . . . , xn}} the multiset of
elements x1, . . . , xn. We have the following proposition.
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Proposition 41. With the notation defined above, we have (x, y) ∈ ρ(N σ(M,N)) = ρ(Uσ(M,N))
if and only if

{{ϕ1(x), . . . , ϕℓ(x)}} = {{ϕ1(y), . . . , ϕℓ(y)}},
where we identify Y with [ℓ], which inherits its G-set structure from Y , and the maps ϕi are those
defined in (6).

Proof. By the combination of Proposition 40 and Theorem 8 in [18], we have ρ(N σ(M,N)) =
ρ(Uσ(M,N) = ρ(∆(ϕ1, . . . , ϕℓ)). Thus, it suffices to verify this property for ∆(ϕ1, . . . , ϕℓ). Note
that if x and y satisfy

{{ϕ1(x), . . . , ϕℓ(x)}} = {{ϕ1(y), . . . , ϕℓ(y)}},
then, for each F ∈ ∆(ϕ1, . . . , ϕℓ), we have

F (x) = f ◦ ϕ1(x) + · · ·+ f ◦ ϕℓ(x) = f ◦ ϕ1(y) + · · ·+ f ◦ ϕℓ(y) = F (y).

On the other hand, if

{{ϕ1(x), . . . , ϕℓ(x)}} ≠ {{ϕ1(y), . . . , ϕℓ(y)}},
then we have two possibilities: either there exists an i such that ϕi(x) ̸= ϕi(y), or there exists a value
γ such that the number of indices i with ϕi(x) = γ (denoted s) differs from the number of indices i
with ϕi(y) = γ (denoted t). In the first case, we can choose an interpolating function f that does not
vanish at ϕi(x) and is zero on the other values in consideration. In this case,

F (x) = f ◦ ϕ1(x) + · · ·+ f ◦ ϕℓ(x) ̸= 0 = f ◦ ϕ1(y) + · · ·+ f ◦ ϕℓ(y) = F (y).

In the other case, we can similarly chose a function f nonzero on γ and zero on all the other values in
consideration. In this case,

F (x) = f ◦ ϕ1(x) + · · ·+ f ◦ ϕℓ(x) = sf(γ) ̸= tf(γ) = f ◦ ϕ1(y) + · · ·+ f ◦ ϕℓ(y) = F (y).

This concludes the proof.

Proposition 9 follows directly from Proposition 41.

Proof of Proposition 9. Note that, by Theorem 6, ρ(Uσ(C
1, I)) = CSn

(Rn) and thus has maximal
separation power in the context of permutation invariance; that is, it separates two points if and only
if they lie in the same Sn-orbit. Note that the basis maps associated to C1 are e⊤1 , . . . , e

⊤
n . Hence, by

Proposition 41, (x, y) ∈ ρ(Uσ(C
1, I)) if and only if {{x1, . . . , xn}} = {{y1, . . . , yn}}. This holds

if and only if x and y lie in the same Sn-orbit. Thus, Uσ(C
1, I) also has maximal separation power,

and hence
ρ(Uσ(Rn,RG,R)) = ρ(Uσ(C

1, I)).

Since
Uσ(C

1, I) ⊆ Uσ(Rn,Rn,R) ⊆ Uσ(Rn,RG,R),
it follows that

ρ(Uσ(Rn,RG,R)) ⊆ ρ(Uσ(Rn,Rn,R)) ⊆ ρ(Uσ(C
1, I)).

Therefore, all inclusions must be equalities.

Proof of Theorem 13. We start by proving that M(ϕ1, . . . , ϕl)
G = ∆(ϕ1, . . . , ϕl). Indeed, consider

R : C(Rn) → C(Rn)G the Reynolds operator. For each F ∈ M(ϕ1, . . . , ϕl),

R(F )(x) =
∑
g∈G

F (gx) =
∑
g∈G

f1 ◦ ϕ1(gx) + · · ·+ fl ◦ ϕl(gx) =

M · [(f1 ◦ ϕ1(x) + · · ·+ f1 ◦ ϕl(x)) + · · ·+ (fl ◦ ϕ1(x) + · · ·+ fl ◦ ϕl(x))] =

M · [(f1 + · · ·+ fl) ◦ ϕ1(x) + · · ·+ (f1 + · · ·+ fl) ◦ ϕl(x)] ∈ ∆(ϕ1, . . . , ϕl),

where we denote M := |Stab(ϕ1)| = · · · = |Stab(ϕl)|.
Furthermore, the map

C(Rd)× · · · × C(Rd) → C(Rd)

(f1, . . . , fl) 7→ f1 + · · ·+ fl
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is surjective; hence the Reynolds operator is surjective as a map from M(ϕ1, . . . , ϕl) to
∆(ϕ1, . . . , ϕl). This proves the desired equality.

If f is an invariant function, we have by Theorem 36 and Theorem 40:

f ∈ Uσ(M,N) ⇐⇒ f ∈ ∆(ϕ1, . . . , ϕℓ)

⇐⇒ f ∈ M(ϕ1, . . . , ϕℓ) ⇐⇒ f ∈ C(ϕ1, . . . , ϕℓ)

⇐⇒ P (∂1, . . . , ∂n)f = 0 for each P ∈ I(L(ϕ1) ∪ · · · ∪ L(ϕℓ)).

This concludes the proof.

Proof of Theorem 14. The final part of the proof of Theorem 13 implies that if f ∈ Uσ(M,N), then
for any P ∈ I(L(ϕ1) ∪ · · · ∪ L(ϕℓ)), P (∂1, . . . , ∂n)f = 0. By Remark 32, we know

I(L(ϕ1) ∪ · · · ∪ L(ϕℓ)) = I(L(ϕ1)) ∩ · · · ∩ I(L(ϕℓ)) ⊇ I(L(ϕ1)) · · · I(L(ϕℓ)).

For any α = 1, . . . , ℓ and arbitrary cα ∈ kerϕ⊤
α , note that for

c⊤αx ∈ I(L(ϕα)).

Hence,
(c⊤1 x) · · · (c⊤ℓ x) ∈ I(L(ϕ1)) · · · I(L(ϕℓ)).

Whose associated differential operator can be written as Dc1 · · ·Dcℓ . Therefore,

Dc1 · · ·Dcℓf = 0,

concluding the proof.

Proof of Theorem 15. By Proposition 41, separation-constrained universality is equivalent to the
ability to approximate any function of the form F (ϕ1, . . . , ϕℓ), where F is continuous and Sℓ-
invariant.

Recall that the basis maps are defined as

ϕi = (ϕ1
i , . . . , ϕ

m
i ).

Let W = RY for some finite G-set Y . Since M = AffG(V,RY ), we can, for a suitable choice of
basis, select elements αi ∈ Y such that ϕ1

i = e⊤αi
for each i = 1, . . . , ℓ.

In particular, the function
F : x 7→ G(e⊤α1

x, . . . , e⊤αℓ
x),

for some G : Rℓ → R, is one that should be approximable under separation constraints.

Specifically, we define G as the symmetrization of the monomial

M(x1, . . . , xℓ) = xa1
1 · · ·xaℓ

ℓ ,

that is,
G(x1, . . . , xℓ) =

∑
σ∈Sℓ

M(xσ(1), . . . , xσ(ℓ)).

Now, observe that if
Dc1 · · ·DcℓM ̸= 0,

then
Dc1 · · ·DcℓG ̸= 0

for any choice of ci ∈ kerϕi for some i = 1, . . . , ℓ. Therefore, F cannot be approximated by⋃
h∈N N (Mh, Nh).

This follows because the differential operator Dc1 · · ·Dcℓ reduces the degree of each monomial in G
by at most ℓ. Thanks to the hypothesis ai + ℓ < ai+1 for each i = 1, . . . , ℓ, and a1 > ℓ, all resulting
monomials in Dc1 · · ·DcℓG have distinct multidegrees. In particular, Dc1 · · ·DcℓM , being one of
these monomials and being nonzero, implies that Dc1 · · ·DcℓG is itself nontrivial.
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This proves that if Dc1 · · ·DcℓM ̸= 0, then the function F cannot be approximated by⋃
h∈N N (Mh, Nh).

By direct computation, the coefficients of the monomials of multidegree (a1 − s1, . . . , aℓ − sℓ) in
Dc1 · · ·DcℓM are given by∑

σ∈Sℓ

ai1 !

si1 !
· · · air !

sir !
(cσ(1),1 · · · cσ(s1),1) · (cσ(s1+1),2 · · · cσ(s1+s2),2) · · · (cσ(ℓ−sℓ),ℓ · · · cℓ,ℓ).

where s1, . . . , sℓ ∈ {0, . . . , ℓ}, s1 + · · ·+ sℓ = ℓ and i1, . . . , ir are the indices such that sij ̸= 0.

If at least one of these coefficients is nonzero, then Dc1 · · ·DcℓF is nontrivial and thus cannot be
approximated by

⋃
h∈N N (Mh, Nh).

Proof of Theorem 18. Define V , W , and ι : V → W as in Corollary 43, which states that

N (V,RG/H ⊗Rh, Z) = ι∗ N (W,RG/H ⊗Rh, Z)

for each h ∈ N.

Since H is normal in G, the quotient G/H is a group and the action of H on W is trivial, W is a
G/H-representation, and we have the identification CG(W,Z) = CG/H(W,Z).

From Ravanbakhsh [5], it is known that shallow equivariant neural networks with the regular repre-
sentation as input are universal approximators. In this case,⋃

h∈N
N (W,RG/H ⊗Rh, Z)

is universal in CG(W,Z) = CG/H(W,Z).

Furthermore, the pullback map ι∗ : C(V,Z) → C(W,Z) is a continuous linear operator. Hence,⋃
h∈N

N (V,RG/H ⊗Rh, Z) =
⋃
h∈N

ι∗ N (W,RG/H ⊗Rh, Z)

= ι∗

(⋃
h∈N

N (W,RG/H ⊗Rh, Z)

)

= ι∗

(⋃
h∈N

N (W,RG/H ⊗Rh, Z)

)
= ι∗

(
CG/H(W,Z)

)
= ι∗ (CG(W,Z)) .

Therefore, the left-hand side is equivariant-universal as well. Finally, observe that ι∗(CG(W,Z))
is an algebra of functions containing the constants, so it is separation-constrained universal by the
Stone–Weierstrass theorem.

Lemma 42. Let H be normal subgroup of G and K an arbitrary subgroup of G. Consider the
standard immersion map

ι : RG/HK → RG/K

as the standard injection induced by the subgroup inclusion K < KH . We define the pullback map

ι∗ :
C(RG/K , Z) → C(RG/HK , Z)

f 7→ f ◦ ι

for any G-representation Z.

Proof. Note that ι∗ HomG(RG/K ,RG/H) ⊆ HomG(RG/HK ,RG/H), since ι∗ is linear and pre-
serves equivariance. Moreover, since ι is injective, the induced map ι∗ is surjective.

Now, assume that H is normal. Then,

dimHomG(RG/K ,RG/H) = |H\G/K| = |H\G/HK| = dimHomG(RG/HK ,RG/H).
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This equality of dimensions, together with the inclusion and surjectivity above, implies that ι∗ is an
isomorphism of vector spaces. In particular,

ι∗ HomG(RG/K ,RG/H) = HomG(RG/HK ,RG/H).

Corollary 43. Let V = RG/K1 ⊕ · · ·⊕RG/Kd and define W = RG/K1H ⊕ · · ·⊕RG/KdH . Consider
the standard immersion map ι : W → V as the standard injection defined component by component
and induced by the subgroup inclusion Ki < KiH for i = 1, . . . , d. We define the pullback map

ι∗ :
C(V,Z) → C(W,Z)

f 7→ f ◦ ι

for any G-representation Z. Then

N (V,RG/H ⊗Rh, Z) = ι∗ N (W,RG/H ⊗Rh, Z),

for any G-representation Z.

Proof. By the properties of representation homomorphisms under direct sums, we have

HomG(V,RG/H ⊗Rh) = HomG

(
RG/K1 ⊕ · · · ⊕ RG/Kd ,RG/H ⊗Rh

)
=

d⊕
i=1

HomG(RG/Ki ,RG/H)⊕h.

By the definition of ι and Lemma 42, it follows that

ι∗ HomG(V,RG/H ⊗Rh) = HomG(W,RG/H ⊗Rh)

for each h ∈ N. Consequently,

ι∗ AffG(V,RG/H ⊗Rh) = AffG(W,RG/H ⊗Rh)

for every h ∈ N as well.

Therefore, for any G-representation Z, we obtain

N (V,RG/H ⊗Rh, Z) = ι∗ N (W,RG/H ⊗Rh, Z),

since ι is precomposed with the input in the first layer.
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