#### **Basics of Geometric Deep Learning**

How can we build symmetry sensitive neural networks? We can build symmetry sensitive linearities and activations. We focus on the latter.

#### Rotations

Let  $R_{\alpha}$  a rotation of  $\mathbb{R}^2$  by an angle  $\alpha \in [0, 2\pi)$ . It can be represented as the matrix

$$R_{\alpha} = \begin{bmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{bmatrix}$$

#### Permutations

Encoding the set of 3 elements  $\{1, 2, 3\}$  like

 $e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \in \mathbb{R}^3.$ 

Permutations of those elements are represented by matrices like

$$P_{id} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad P_{(12)} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad P_{(123)} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

#### Equivariance

A feature map  $\Phi : \mathbb{R}^n \to \mathbb{R}^n$  is **equivariant** with respect to the symmetries P if  $P \circ \Phi = \Phi \circ P.$ 

#### Equivariant Neural Network

An equivariant neural network is a composition  $\Phi = \phi_m \circ \tilde{f}_{m-1} \circ \phi_{m-1} \circ \cdots \circ \tilde{f}_1 \circ \phi_0,$ where each activation  $\tilde{f}_i : \mathbb{R}^n \to \mathbb{R}^n$  is a equivariant function, and  $\phi_i(x) = Ax + b$ for  $A \in \mathbb{R}^{n \times n}$  and  $b \in \mathbb{R}^n$  such that  $\phi_i$  is equivariant.

#### **Point-wise Activations**

An activation  $f: \mathbb{R}^n \to \mathbb{R}^n$  is **point-wise** if there is a real scalar function  $f: \mathbb{R} \to \mathbb{R}$  such that  $\widetilde{f}(x_1,\ldots,x_n) = (f(x_1),\ldots,f(x_n))^t$ 

# A Characterization Theorem for Equivariant Networks with Point-wise Activations

Marco Pacini, Xiaowen Dong, Bruno Lepri, Gabriele Santin

Fondazione Bruno Kessler & University of Trento

#### **Breaking Symmetry**

• ReLU, as many other point-wise activations, **is not equivariant** with respect to some symmetries such as rotations

$$ReLU \circ R_{\frac{\pi}{2}} \left( \begin{bmatrix} 0\\1 \end{bmatrix} \right) = ReLU \left( \neq \right)$$

$$R_{\frac{\pi}{2}} \circ ReLU\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = R_{\frac{\pi}{2}}\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$$

• ReLU, as many other point-wise activations, **is equivariant** with respect to some symmetries such as **permutation** 

# A Natural Question Comes to Mind

Which are combinations of **symmetries** and **activation functions** that lead to an **equivariant layer**?

# Preliminaries – Activation Functions

- The *b*-multiplicative functions:  $f(b^n x) = b^n f(x)$  for each  $n \in \mathbb{Z}$  and for each  $x \in \mathbb{R}$ ,
- The  $\pm b$ -multiplicative functions:  $f(\pm b^n x) = \pm b^n f(x)$  for each  $n \in \mathbb{Z}$  and for each  $x \in \mathbb{R}$ ,
- Odd functions: f(-x) = -f(x) for each  $x \in \mathbb{R}$ ,
- Semilinear functions: linear on  $\mathbb{R}_{>0}$  and on  $\mathbb{R}_{<0}$ .

# Preliminaries – Symmetries

Permutation matrices, signed permutation matrices, b-monomial matrices, and ±b-monomial matrices

$$P = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \quad S = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}, \quad M_b = \begin{bmatrix} 0 & b & 0 \\ 0 & 0 & b^2 \\ \frac{1}{b^5} & 0 & 0 \end{bmatrix}, \quad M_{\pm b} = \begin{bmatrix} 0 & -\frac{1}{b} & 0 \\ 0 & 0 & b \\ -b & 0 & 0 \end{bmatrix}.$$

# The Characterization Theorem

**Theorem:** Assume activation functions are **not affine** and **continuous**. The following are the only possible combinations of activation functions and symmetries

- Continuous functions and permutation matrices,
- Odd functions and signed permutation matrices,
- Semilinear functions and non-negative monomial matrices,
- Continuous b-multiplicative functions and b-monomial matrices,
- Continuous  $\pm b$ -multiplicative functions and  $\pm b$ -monomial matrices.

 $\begin{bmatrix} -1\\ 0 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$ 

 $\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{vmatrix} -1\\0 \end{vmatrix}$ 

# **Adjacency Matrices and Graph Isomorphism**

$$A_{G_1} =$$

# The Linear Algebra of Node Permutations

A permutation of nodes induces isomorphic graphs and acts linearly on permutation matrices by conjugation

| $A_{G_2} =$ | $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ | _ | $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ | • | $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ | • | $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ | $= P_{(12)}^t \cdot A_{G_1} \cdot P_{(12)}.$ |
|-------------|---------------------------------------------------------------------|---|---------------------------------------------------------------------|---|---------------------------------------------------------------------|---|---------------------------------------------------------------------|----------------------------------------------|
|             |                                                                     |   |                                                                     |   |                                                                     |   |                                                                     |                                              |

# Invariant Graph Networks (IGNs)

 $\mathcal{N}: (\mathbb{R}^n)^{\otimes 2} \otimes \mathbb{R}^f \to \mathcal{Y}$  $\mathcal{N}(P^t_{\sigma}AP_{\sigma}, F) = \sigma \mathcal{N}(A, F)$ 

IGNs are permutation equivariant neural networks defined as where  $\mathbb{R}^{f}$  is a **feature space**. This means where  $\sigma$  is a permutation of the nodes, also acting on  $\mathcal{Y}$ .

# **Geometric Relational Structures & IGNs**

Geometric graphs or higher-order structures are employed in computer graphs, computational biology, and computational chemistry. They can be encoded in a vector divided in a relational part and a geometric part:

Geometric IGNs are rotation-equivariant IGNS defined as  $\mathcal{N}: (\mathbb{R}^n)^{\otimes 2} \otimes \mathbb{R}^3 \to \mathcal{Y}$ 

**Corollary:** Every Geometric IGN coupled with non-affine activations is **null** 

- Learning Representations.
- activations. To Appear.



$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad A_{G_2} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

We indicate the space of  $n \times n$  matrices as  $(\mathbb{R}^n)^{\otimes 2}$  and k-order tensors as  $(\mathbb{R}^n)^{\otimes k}$ .

 $(\mathbb{R}^n)^{\otimes 2} \otimes \mathbb{R}^3$ 

#### **A Non-existence Result**

# References

[1] Taco Cohen and Max Welling. Group equivariant convolutional networks. In International Conference on Machine Learning. [2] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph networks. International Conference on

[3] Marco Pacini, Xiaowen Dong, Bruno Lepri, and Gabriele Santin. A characterization theorem for equivariant networks with point-wise

[4] Jeffrey Wood and John Shawe-Taylor. Representation theory and invariant neural networks. *Discrete applied mathematics*.