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Basics of Geometric Deep Learning

How can we build symmetry sensitive neural networks? We can build symmetry sensitive

linearities and activations. We focus on the latter.

Rotations

Let Rα a rotation of R2 by an angle α ∈ [0, 2π). It can be represented as the matrix

Rα =
[

cos(α) sin(α)
− sin(α) cos(α)

]

Permutations

Encoding the set of 3 elements {1, 2, 3} like

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 ∈ R3 .

Permutations of those elements are represented by matrices like

Pid =

1 0 0
0 1 0
0 0 1

 , P(12) =

0 1 0
1 0 0
0 0 1

 , P(123) =

0 0 1
1 0 0
0 1 0

 .

Equivariance

A feature map Φ : Rn → Rn is equivariant with respect to the symmetries P if

P ◦ Φ = Φ ◦ P .

Equivariant Neural Network

An equivariant neural network is a composition

Φ = φm ◦ f̃m−1 ◦ φm−1 ◦ · · · ◦ f̃1 ◦ φ0,

where each activation f̃i : Rn → Rn is a equivariant function, and

φi(x) = Ax + b

for A ∈ Rn×n and b ∈ Rn such that φi is equivariant.

Point-wise Activations

An activation f̃ : Rn → Rn is point-wise if there is a real scalar function f : R → R such that

f̃ (x1, . . . , xn) = (f (x1), . . . , f (xn))t

Breaking Symmetry

ReLU, as many other point-wise activations, is not equivariant with respect to some

symmetries such as rotations

ReLU ◦ Rπ
2

([
0
1

])
= ReLU

([
−1
0

])
=
[
0
0

]
6=

Rπ
2

◦ ReLU

([
0
1

])
= Rπ

2

([
0
1

])
=
[
−1
0

]
ReLU, as many other point-wise activations, is equivariant with respect to some symmetries

such as permutation

ANatural Question Comes to Mind

Which are combinations of symmetries and activation functions

that lead to an equivariant layer?

Preliminaries – Activation Functions

The b-multiplicative functions: f (bnx) = bnf (x) for each n ∈ Z and for each x ∈ R,
The ±b-multiplicative functions: f (±bnx) = ±bnf (x) for each n ∈ Z and for each x ∈ R,
Odd functions: f (−x) = −f (x) for each x ∈ R,
Semilinear functions: linear on R>0 and on R<0.

Preliminaries – Symmetries

Permutationmatrices,signed permutationmatrices, b-monomialmatrices, and±b-monomialma-

trices

P =

0 0 1
1 0 0
0 1 0

 , S =

0 0 1
1 0 0
0 −1 0

 , Mb =

 0 b 0
0 0 b2
1
b5 0 0

 , M±b =

 0 −1
b 0

0 0 b
−b 0 0

 .

The Characterization Theorem

Theorem: Assume activation functions are not affine and continuous. The following are the

only possible combinations of activation functions and symmetries

1. Continuous functions and permutation matrices,

2. Odd functions and signed permutation matrices,

3. Semilinear functions and non-negative monomial matrices,

4. Continuous b-multiplicative functions and b-monomial matrices,

5. Continuous ±b-multiplicative functions and ±b-monomial matrices.

AdjacencyMatrices and Graph Isomorphism

AG1 =

0 1 0
1 0 1
0 1 0

 , AG2 =

0 1 1
1 0 0
1 0 0

 .

We indicate the space of n × n matrices as (Rn)⊗2 and k-order tensors as (Rn)⊗k.

The Linear Algebra of Node Permutations

A permutation of nodes induces isomorphic graphs and acts linearly on permutation matrices by

conjugation

AG2 =

0 1 1
1 0 0
1 0 0

 =

0 1 0
1 0 0
0 0 1

 ·

0 1 0
1 0 1
0 1 0

 ·

0 1 0
1 0 0
0 0 1

 = P t
(12) · AG1 · P(12).

Invariant Graph Networks (IGNs)

IGNs are permutation equivariant neural networks defined as

N : (Rn)⊗2 ⊗ Rf → Y
where Rf is a feature space. This means

N (P t
σAPσ, F ) = σN (A, F )

where σ is a permutation of the nodes, also acting on Y .

Geometric Relational Structures & IGNs

Geometric graphs or higher-order structures are employed in computer graphs, computational

biology, and computational chemistry. They can be encoded in a vector divided in a relational

part and a geometric part:

(Rn)⊗2 ⊗ R3

Geometric IGNs are rotation-equivariant IGNS defined as

N : (Rn)⊗2 ⊗ R3 → Y

ANon-existence Result

Corollary: Every Geometric IGN coupled with non-affine activations is null
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