A Characterization Theorem for Equivariant Networks with Point-wise Activations

Marco Pacini, Xiaowen Dong, Bruno Lepri, Gabriele Santin

Fondazione Bruno Kessler & University of Trento

How can we build symmetry sensitive neural networks? We can build symmetry sensitive linearities and activations. We focus on the latter.

Basics of Geometric Deep Learning

Rotations

Let R_α a rotation of \mathbb{R}^2 by an angle $\alpha \in [0,2\pi)$. It can be represented as the matrix

$$
R_{\alpha} = \begin{bmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{bmatrix}
$$

Permutations

Encoding the set of 3 elements {1*,* 2*,* 3} like

 $e_1 =$ $\sqrt{ }$ $\overline{}$ 1 $\overline{0}$ $\overline{0}$ 1 $\Big\}, \quad e_2 =$ $\sqrt{ }$ $\overline{}$ 0 1 $\overline{0}$ 1 $\Big\}, \quad e_3 =$ $\sqrt{ }$ $\overline{}$ 0 $\overline{0}$ 1 1 $\Big| \in \mathbb{R}^3$.

Permutations of those elements are represented by matrices like

$$
P_{id} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad P_{(12)} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad P_{(123)} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.
$$

0 1 \bigwedge = $\lceil -1 \rceil$ 0 1

Equivariance

A feature map $\Phi : \mathbb{R}^n \to \mathbb{R}^n$ is **equivariant** with respect to the symmetries P if $P \circ \Phi = \Phi \circ P$.

Equivariant Neural Network

An equivariant neural network is a composition $\Phi = \phi_m \circ \tilde{f}_{m-1} \circ \phi_{m-1} \circ \cdots \circ \tilde{f}_1 \circ \phi_0,$ where each *activation* $\tilde{f}_i: \mathbb{R}^n \to \mathbb{R}^n$ is a equivariant function, and $\phi_i(x) = Ax + b$ for $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$ such that ϕ_i is equivariant.

- The *b*-multiplicative functions: $f(b^n x) = b^n f(x)$ for each $n \in \mathbb{Z}$ and for each $x \in \mathbb{R}$,
- The $\pm b$ -multiplicative functions: $f(\pm b^n x) = \pm b^n f(x)$ for each $n \in \mathbb{Z}$ and for each $x \in \mathbb{R}$,
- Odd functions: $f(-x) = -f(x)$ for each $x \in \mathbb{R}$,
- Semilinear functions: linear on R*>*⁰ and on R*<*0.

Point-wise Activations

An activation $\tilde{f}:\mathbb{R}^n\to\mathbb{R}^n$ is $\mathsf{point\text{-}wise}$ if there is a real scalar function $f:\mathbb{R}\to\mathbb{R}$ such that $\tilde{f}(x_1, \ldots, x_n) = (f(x_1), \ldots, f(x_n))^t$

Theorem: Assume activation functions are not affine and continuous. The following are the only possible combinations of activation functions and symmetries

- Continuous functions and permutation matrices,
- Odd functions and signed permutation matrices,
- Semilinear functions and non-negative monomial matrices,
- 4. Continuous *b*-multiplicative functions and *b*-monomial matrices,
- **Continuous** $\pm b$ -multiplicative functions and $\pm b$ -monomial matrices.

Breaking Symmetry

ReLU, as many other point-wise activations, is not equivariant with respect to some symmetries such as **rotations**

$$
ReLU \circ R_{\frac{\pi}{2}}\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = ReLU \begin{pmatrix} \\ & \neq \end{pmatrix}
$$

$$
R_{\frac{\pi}{2}} \circ ReLU\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = R_{\frac{\pi}{2}}\left(\begin{bmatrix}0\\1\end{bmatrix}\right)
$$

ReLU, as many other point-wise activations, is equivariant with respect to some symmetries such as **permutation**

A Natural Question Comes to Mind

Which are combinations of symmetries and activation functions that lead to an **equivariant layer**?

Preliminaries – Activation Functions

Geometric graphs or higher-order structures are employed in computer graphs, computational biology, and computational chemistry. They can be encoded in a vector divided in a relational part and a geometric part:

Geometric IGNs are rotation-equivariant IGNS defined as $\mathcal{N}:(\mathbb{R}^{n})^{\otimes2}\otimes\mathbb{R}^{3}\rightarrow\mathcal{Y}$

Corollary: Every Geometric IGN coupled with non-affine activations is null

Preliminaries – Symmetries

Permutation matrices,signed permutation matrices, *b*-monomial matrices, and ±*b*-monomial matrices

$$
P = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \quad S = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}, \quad M_b = \begin{bmatrix} 0 & b & 0 \\ 0 & 0 & b^2 \\ \frac{1}{b^5} & 0 & 0 \end{bmatrix}, \quad M_{\pm b} = \begin{bmatrix} 0 & -\frac{1}{b} & 0 \\ 0 & 0 & b \\ -b & 0 & 0 \end{bmatrix}.
$$

The Characterization Theorem

Adjacency Matrices and Graph Isomorphism

$$
A_{G_1} =
$$

$$
\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad A_{G_2} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}.
$$

We indicate the space of $n \times n$ matrices as $(\mathbb{R}^n)^{\otimes 2}$ and k -order tensors as $(\mathbb{R}^n)^{\otimes k}.$

 $(\mathbb{R}^n)^{\otimes 2} \otimes \mathbb{R}^3$

The Linear Algebra of Node Permutations

A permutation of nodes induces isomorphic graphs and acts linearly on permutation matrices by conjugation

Invariant Graph Networks (IGNs)

 $\mathcal{N}:(\mathbb{R}^n)^{\otimes 2}\otimes \mathbb{R}^f \rightarrow \mathcal{Y}$ where \mathbb{R}^f is a **feature space**. This means $\mathcal{N}(P^t_\sigma A P_\sigma, F) = \sigma \mathcal{N}(A, F)$

IGNs are permutation equivariant neural networks defined as where σ is a permutation of the nodes, also acting on \mathcal{Y} .

Geometric Relational Structures & IGNs

A Non-existence Result

References

[1] Taco Cohen and Max Welling. Group equivariant convolutional networks. In *International Conference on Machine Learning*. [2] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph networks. *International Conference on*

-
- *Learning Representations*.
- activations. *To Appear*.
-

[3] Marco Pacini, Xiaowen Dong, Bruno Lepri, and Gabriele Santin. A characterization theorem for equivariant networks with point-wise

[4] Jeffrey Wood and John Shawe-Taylor. Representation theory and invariant neural networks. *Discrete applied mathematics*.

 $\sqrt{}$ 0 \bigwedge = $\sqrt{0}$ 0 1