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Equivariance

A feature map η : Rn → Rn is

equivariant with respect to P if

P ◦ η = η ◦ P

E.g.:
P
(

2
1

3

)
= 2

1

3
and η

(
2

1

3

)
=

η
(

2
1

3

)
= η ◦ P

(
2

1

3

)
= P ◦ η

(
2

1

3

)
= P ( ) =

Point-wise Activations

σ̃(x1, . . . , xn) := (σ(x1), . . . , σ(xn))

E.g.: σ = ReLU, sigmoid, tanh, . . .

Equivariant Neural Networks

Equivariant linearities φi and

equivariant activation σ̃:

η := φm ◦ σ̃ ◦ φm−1 ◦ · · · ◦ σ̃ ◦ φ0

Spaces of Equivariant Neural Networks

Given layer spaces as subspaces Mi ⊆ Aff(Rni−1,Rni), define:
N = Nσ(M1, . . . , Md) := {φm ◦ σ̃ ◦ φm−1 ◦ · · · ◦ σ̃ ◦ φ0 | φi ∈ Mi}

E.g., Shallow Invariant CNNs: N = Nσ(M1, M2)

M1 represents all the convolutions with fixed filter width and filter number

M2 represents invariant layers with fixed output dimension

Issue: Separation constraints Universality

GNNs, or more generally IGNs, fail to approximate continuous equivariant functions.

For k-WL theory, if

N = {1 − WL ∼ GNNs}:

∀η ∈ N , η
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= η

( )
Thus, N fails to approximate equivariant

functions η̃ such that:

η̃
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6= η̃
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Workaround: Separation-constrained Universality

Can we approximate functions with specific separation constraints, as GNNs do?

First, we need to describe these constraints — but we do not have WL!

Then, we need to understand how to influence these constraints in an actionable way!

Research Questions

1. How can we compute input pairs identified by N ? Formally:

ρ(N ) := {(α, β) ∈ X × X | η(α) = η(β), ∀η ∈ N }
2. How do hyperparameters and architecture choices influence ρ(N )?

1. Main Theorem - How to Compute ρ(N )

The Twin Network Trick
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Separation ↔ Zero Locuses

Define the zero locus:

I(N ) := {x ∈ X | η(x) = 0 ∀η ∈ N }

The space of twin networks:

∆(N ) := {(α, β) 7→ η(α) − η(β)|f ∈ N }

Then, we have the equivalence:

ρ(N ) = I(∆(N ))

Claim - Informal

For non-polynomial activations σ, we have the following depth-recursive formula:

I(Nσ(M1, . . . , Md)) =
⋂
h,k

⋃
Q∈Ψh,k

⋂
P∈Q
i,j∈P

I(Nσ(M1, . . . , Md−2, (Md−1)ij))
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2. Hyperparameters and Architecture Choices

The Role of Activations

Non-polynomial activations σ, τ yield equivalent separation power:

ρ(Nσ(M1, . . . , Md)) = ρ(Nτ (M1, . . . , Md))

Furthermore, separation power can only decrease for polynomial activations

The Role of Depth

For compatible layer spaces Mi and m ≤ n:

ρ(Nσ(M1, . . . , Mh−1, Mh, . . . , Mh︸ ︷︷ ︸
n times

, Mh+1, . . . , Md)) ⊆

⊆ ρ(Nσ(M1, . . . , Mh−1, Mh, . . . , Mh︸ ︷︷ ︸
m times

, Mh+1, . . . , Md))

but there is a repetition threshold beyond which separation power stabilizes

The Role of Multiple Features

Given Mi = AffG(Rni−1,Rni) for each i, write

Ñσ(Rn0, . . . ,Rnd) := Nσ(M1, . . . , Md)

For arbitrary G y Rni,Rni′:

ρ(Ñσ(Rn0, . . . ,Rni ⊕ Rni′, . . . ,Rnd)) =

ρ(Ñσ(Rn0, . . . ,Rni, . . . ,Rnd)) ∩ ρ(Ñσ(Rn0, . . . ,Rni′, . . . ,Rnd))

For the trivial G y Rf :

ρ(Ñσ(Rn0, . . . ,Rni ⊗Rf , . . . ,Rnd)) = ρ(Ñσ(Rn0, . . . ,Rni, . . . ,Rnd))

Corollary on IGNs
There exists d > 0 such that for any hidden feature dimensions f1, . . . , fd > 0,
the space Ñσ((Rn)⊗2 ⊗ Rf0, (Rn)⊗k ⊗ Rf1, . . . , (Rn)⊗k ⊗ Rfd,R) matches the

separation power of k-WL

The Role of Representation Type

For H ≤ G, define the left cosets of H and the relative vector space RG/H :

G/H := {gH | g ∈ G} and RG/H := {f : G/H → R}

For K≤H ≤ G, we have:

ρ(Ñσ(V, . . . ,RG/K, . . . , W )) ⊆ ρ(Ñσ(V, . . . ,RG/H , . . . , W ))

Future Directions

Separation-constrained Approximation: Can universality results be derived under the

separation constraint?

Generalization Bounds: How do models with the same separation power generalize?

@MarcoPacini4 | � marco-pacini.github.io | � mpacini@fbk.eu

https://twitter.com/MarcoPacini4
https://marco-pacini.github.io
mpacini@fbk.eu

