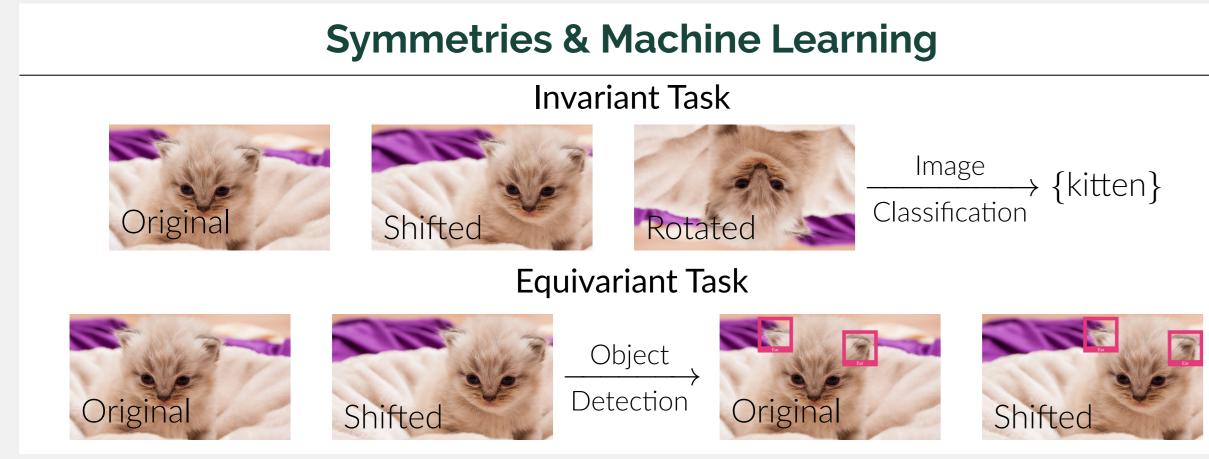
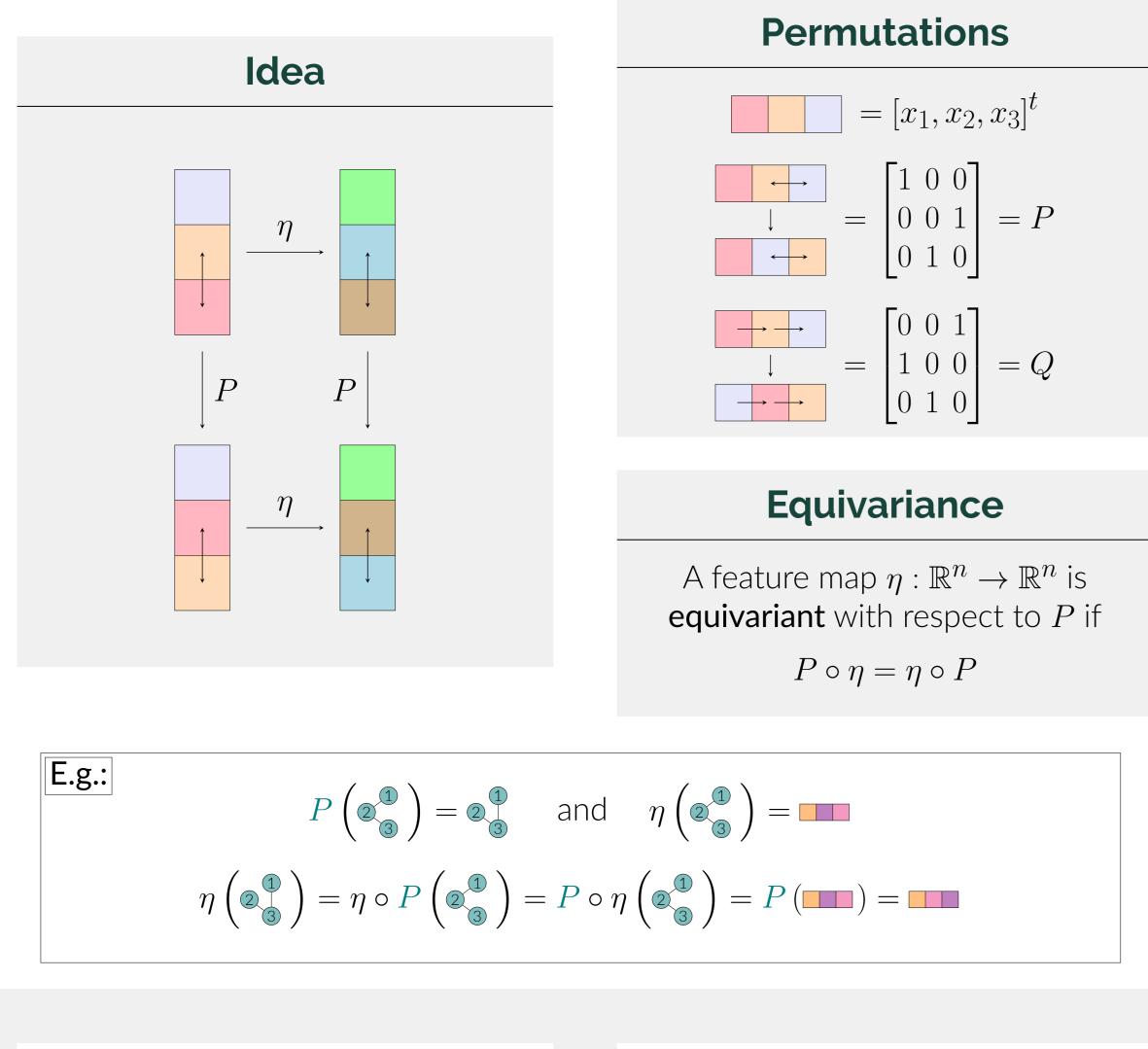


Basics of Geometric Deep Learning



Permutations, Symmetries & Equivariance



Point-wise Activations

 $\tilde{\sigma}(x_1,\ldots,x_n) := (\sigma(x_1),\ldots,\sigma(x_n))$ **E.g.:** $\sigma = \text{ReLU}$, sigmoid, tanh, . . .

Equivariant Neural Networks

Equivariant **linearities** ϕ_i and equivariant activation $\tilde{\sigma}$: $\eta := \phi_m \circ \tilde{\sigma} \circ \phi_{m-1} \circ \cdots \circ \tilde{\sigma} \circ \phi_0$

Spaces of Equivariant Neural Networks

Given layer spaces as subspaces $M_i \subseteq Aff(\mathbb{R}^{n_{i-1}}, \mathbb{R}^{n_i})$, define: $\mathcal{N} = \mathcal{N}_{\sigma}(M_1, \dots, M_d) := \{ \phi_m \circ \tilde{\sigma} \circ \phi_{m-1} \circ \dots \circ \tilde{\sigma} \circ \phi_0 \mid \phi_i \in M_i \}$

E.g., Shallow Invariant CNNs: $\mathcal{N} = \mathcal{N}_{\sigma}(M_1, M_2)$

• M_1 represents all the convolutions with fixed filter width and filter number

• M_2 represents invariant layers with fixed output dimension

Separation Power of Equivariant Neural Networks

Marco Pacini^{1, 2}, Xiaowen Dong ³, Bruno Lepri², Gabriele Santin⁴

¹ University of Trento, ² Fondazione Bruno Kessler, ³ University of Oxford, ⁴ University of Venice

Issue: Separation constraints Universality

GNNs, or more generally IGNs, fail to approximate continuous equivariant functions.

For k-WL theory, if

$$\mathcal{N} = \{1 - WL \sim GNNs\}:$$

 $\forall \eta \in \mathcal{N}, \ \eta \left(\bigcirc \bigcirc \right) = \eta \left(\bigcirc \bigcirc \bigcirc \right)$

Thus, \mathcal{N} fails to approximate equivariant functions $\tilde{\eta}$ such that: $\tilde{\eta}\left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \\ \end{array} \right) \neq \tilde{\eta}\left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \end{array} \right)$

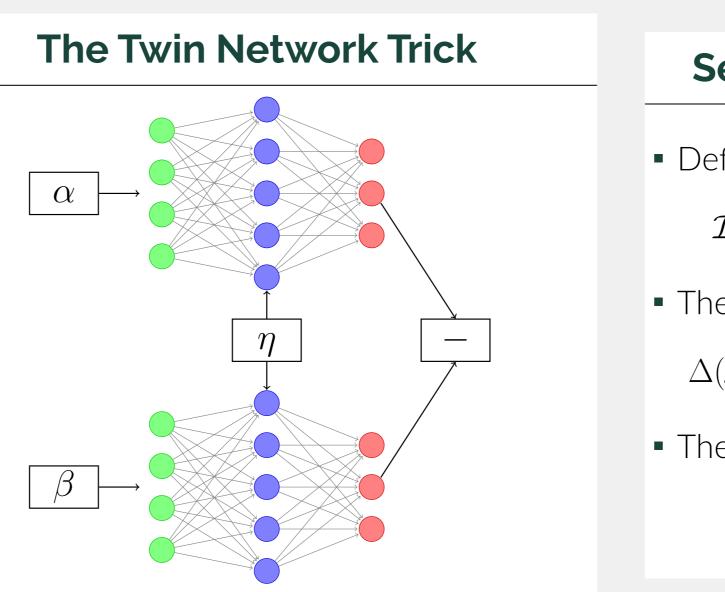
Workaround: Separation-constrained Universality

Can we approximate functions with **specific separation constraints**, as GNNs do? First, we need to describe these constraints — but we do not have WL! Then, we need to understand how to influence these constraints in an actionable way!

Research Questions

- . How can we **compute** input pairs **identified** by \mathcal{N} ? Formally: $\rho(\mathcal{N}) := \{ (\alpha, \beta) \in X \times X \mid \eta(\alpha) = \eta(\beta), \forall \eta \in \mathcal{N} \}$
- 2. How do hyperparameters and architecture choices influence $\rho(\mathcal{N})$?

1. Main Theorem - How to Compute $\rho(\mathcal{N})$



Claim - Informal

For **non-polynomial** activations σ , we have the following depth-recursive formula:

$$\mathcal{I}(\mathcal{N}_{\sigma}(M_1,\ldots,M_d)) = \bigcap_{h,k} \bigcup_{\mathcal{Q}\in\Psi_{h,k}} \bigcap_{\substack{P\in\mathcal{Q}\\i,j\in P}} \mathcal{I}(\mathcal{N}_{\sigma})$$

References

- [1] C. K. Joshi et al. On the Expressive Power of Geometric Graph Neural Networks. *ICLR*, 2023.
- [2] H. Maron et al. Provably Powerful Graph Networks. ICLR, 2019.
- [3] M. Pacini et al. A Characterization Theorem for Equivariant Networks with Point-wise Activations. ICLR, 2024.
- [4] F. Geerts and J. L. Reutter. Expressiveness and Approximation Properties of Graph Neural Networks. *ICLR*, 2022.

Separation \leftrightarrow **Zero Locuses**

• Define the **zero locus**:

 $\mathcal{I}(\mathcal{N}) := \{ x \in X \mid \eta(x) = 0 \; \forall \eta \in \mathcal{N} \}$

The space of twin networks:

 $\Delta(\mathcal{N}) := \{ (\alpha, \beta) \mapsto \eta(\alpha) - \eta(\beta) | f \in \mathcal{N} \}$

• Then, we have the **equivalence**:

 $\rho(\mathcal{N}) = \mathcal{I}(\Delta(\mathcal{N}))$

 $\mathcal{C}_{\sigma}(M_1,\ldots,M_{d-2},(M_{d-1})_{ij}))$

2. Hyperparameters and Architecture Choices

 $\rho(\mathcal{N}_{\sigma}(M_1,\ldots,M_d)) = \rho(\mathcal{N}_{\tau}(M_1,\ldots,M_d))$

Furthermore, separation power can only decrease for polynomial activations

For compatible layer spaces M_i and $m \leq n$: $\rho(\mathcal{N}_{\sigma}(M_1,\ldots,M_{h-1},\underbrace{M_h,\ldots,M_h}_{n \text{ times}},M_{h+1},\ldots,M_d)) \subseteq$

 $\subseteq \rho(\mathcal{N}_{\sigma}(M_1, \dots, M_{h-1}, \underbrace{M_h, \dots, M_h}_{m \text{ times}}, M_{h+1}, \dots, M_d))$

but there is a **repetition threshold** beyond which separation power **stabilizes**

The Role of Multiple Features

Given $M_i = \operatorname{Aff}_G(\mathbb{R}^{n_{i-1}}, \mathbb{R}^{n_i})$ for each *i*, write

 $\tilde{\mathcal{N}}_{\sigma}(\mathbb{R}^{n_0},\ldots,\mathbb{R}^{n_d}) := \mathcal{N}_{\sigma}(M_1,\ldots,M_d)$

• For arbitrary $G \curvearrowright \mathbb{R}^{n_i}, \mathbb{R}^{n_{i'}}$:

 $\rho(\tilde{\mathcal{N}}_{\sigma}(\mathbb{R}^{n_0},\ldots,\mathbb{R}^{n_i}\oplus\mathbb{R}^{n_i\prime},\ldots,\mathbb{R}^{n_d})) =$ $\rho(\tilde{\mathcal{N}}_{\sigma}(\mathbb{R}^{n_0},\ldots,\mathbb{R}^{n_i},\ldots,\mathbb{R}^{n_d})) \cap \rho(\tilde{\mathcal{N}}_{\sigma}(\mathbb{R}^{n_0},\ldots,\mathbb{R}^{n_{i'}},\ldots,\mathbb{R}^{n_d}))$

• For the **trivial** $G \curvearrowright \mathbb{R}^{f}$:

 $\rho(\tilde{\mathcal{N}}_{\sigma}(\mathbb{R}^{n_0},\ldots,\mathbb{R}^{n_i}\otimes\mathbb{R}^f,\ldots,\mathbb{R}^{n_d}))=\rho(\tilde{\mathcal{N}}_{\sigma}(\mathbb{R}^{n_0},\ldots,\mathbb{R}^{n_i},\ldots,\mathbb{R}^{n_d}))$

There exists d > 0 such that for **any** hidden feature dimensions $f_1, \ldots, f_d > 0$, the space $\tilde{\mathcal{N}}_{\sigma}((\mathbb{R}^n)^{\otimes 2} \otimes \mathbb{R}^{f_0}, (\mathbb{R}^n)^{\otimes k} \otimes \mathbb{R}^{f_1}, \dots, (\mathbb{R}^n)^{\otimes k} \otimes \mathbb{R}^{f_d}, \mathbb{R})$ matches the separation power of k-WL

The Role of Representation Type

For $H \leq G$, define the **left cosets** of H and the relative vector space $\mathbb{R}^{G/H}$:

 $G/H := \{gH \mid g \in G\}$ and $\mathbb{R}^{G/H} := \{f : G/H \to \mathbb{R}\}$ For $K \leq H \leq G$, we have:

 $\rho(\tilde{\mathcal{N}}_{\sigma}(V,\ldots,\mathbb{R}^{G/K},\ldots,W)) \subseteq \rho(\tilde{\mathcal{N}}_{\sigma}(V,\ldots,\mathbb{R}^{G/H},\ldots,W))$

Future Directions

- separation constraint?

The Role of Activations

Non-polynomial activations σ , τ yield **equivalent** separation power:

The Role of Depth

Corollary on IGNs

Separation-constrained Approximation: Can universality results be derived under the

• Generalization Bounds: How do models with the same separation power generalize?