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Basics of Geometric Deep Learning Relevant Implications
_ _ _ Breaking Symmetry _ _
Symmetries & Machine Learning Geometric Invariant Graph Networks (IGNs)
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Representations of Geometric Data & Symmetries

Research Question

3D Meshes, Molecules & More... Geometric Graphs Adjacency Tensor .
Relevant Corollaries
|yn‘Z;;Z;ff‘°?.;1;£’: » Given specific symmetries, need to guess viable activations to design equivariant layers?
wufeizfa] - T = Or manage to completely describe the following correspondence? :
¢ _* [?] (Symmetries P, Functions f) «+— Equivariant Activations f’ [?] Geometric IGNs with non-affine point-wise activations are trivial.
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A common mitigation strategy is to require equivariance on only a finite subset of
i . symmetries. This approach leads to networks which are
Permutations Main Theorem Y . pp. | | | |
; = approximately equivariant with respect to the entire group of symmetries
= |21, 72, 73 Equi ] - ] = non-trivial and completely described by the following Corollary of Claim 2 |
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T —loo1l=p L N Finite Groups of Symmetries
T 010 A T-monomial matrix has only one non-zero Atunction f : R — Ris T-equivariant it
i i element for each column and row and it lies in ftx) =tf(x) Let G be a finite set of symmetries and suppose f non-odd non-affine. Then
001 T. Where T C R is a multiplicative group. foreachz e Randt e T. each hidden representation is of the form
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Idea Equivariance , o | - o |
= Robustness of approximate equivariance, i.e., satisfying equivariance on a finite
A feature map @ : R — R" is . subset of symmetries implies bounds on ||P o ® — ® o P||. Experimental results are
o equivariant with respect to P if Claim 1 - Informal positive, no theoretical results are known to the authors.
[ [ Pod—PoP Assume f to be non-affine and continuous. Then = Apply the proposed approaches to models with activations beyond real point-wise
. o o o . ones. E.g.: (i) complex neural networks with complex point-wise activations similar
(T’-monomial P, T-equivariant f) <= Equivariant Activations f to Harmonic Networks [2] or (ii) the more general Steerable CNNs [1].
‘ P P‘ Equivariant Neural Networks
Composition Claim 2 - Informal References
¢ d = ¢ of o ¢ o...ofo¢ . . .
! [ m > Jm—1%%¥m—1 1> %0 Let P belong to a compact set of symmetries. Then, up to coordinate change, P is a
l l of equivariant linearities ¢, and equivariant acti- sighed-permutation matrix. If f is not odd, P is a permutation matrix. 1] T. Cohen and M. Welling. Steerable cnns. ICLR, 2017.
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