

A Characterization Theorem for Equivariant Networks with Point-wise Activations

Basics of Geometric Deep Learning

Equivariant Neural Networks

Marco Pacini^{1,2}, Xiaowen Dong³, Bruno Lepri², Gabriele Santin⁴

¹ University of Trento, ² Fondazione Bruno Kessler, ³ University of Oxford, ⁴ University of Venice

Breaking Symmetry

Point-wise Activations

$$\tilde{f}(x_1,\ldots,x_n) = (f(x_1),\ldots,f(x_n))$$

e.g. f = ReLU, sigmoid, tanh, . . .

ReLU is equivariant with respect to permutation representations

E.g.:

ReLU o*F*

 $R_{\frac{\pi}{2}} \circ \operatorname{ReL}$

Research Question

- Given **specific symmetries**, need to guess **viable activations** to design **equivariant layers**?
- Or manage to completely describe the following correspondence?
 - [?] (Symmetries P, Functions $f \rightarrow \text{Equivariant Activations } \tilde{f}$ [?]

Main Theorem

Claim 1 - Informal

Assume f to be **non-affine** and **continuous**. Then

(T-monomial P, T-equivariant $f \implies Equivariant Activations f$

Claim 2 - Informal

Let P belong to a **compact** set of symmetries. Then, up to coordinate change, P is a **signed-permutation matrix**. If f is not odd, P is a **permutation matrix**.

ReLU is not equivariant with respect to rotations. Indeed ↓

$$R_{\frac{\pi}{2}}\begin{pmatrix} \begin{bmatrix} 0\\1 \end{bmatrix} \end{pmatrix} = \operatorname{ReLU}\begin{pmatrix} \begin{bmatrix} -1\\0 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix}$$
$$= \neq$$
$$LU\begin{pmatrix} \begin{bmatrix} 0\\1 \end{bmatrix} \end{pmatrix} = R_{\frac{\pi}{2}}\begin{pmatrix} \begin{bmatrix} 0\\1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} -1\\0 \end{bmatrix}$$

T-Equivariant Functions

A function $f : \mathbb{R} \to \mathbb{R}$ is *T*-equivariant if

f(tx) = tf(x)

for each $x \in \mathbb{R}$ and $t \in T$.

$$\begin{array}{c|c} T = \langle 1 \rangle & T = \langle \pm 1 \rangle & T = \mathbb{R}_{>0} \\ \hline \\ \text{Each } f & \text{Each odd } f & \text{LeakyReL} \\ & & & \\ & & & \\ \end{array}$$

Relevant Implications

Geometric Invariant Graph Networks (IGNs)

A Geometric IGN is a neural network $\Phi: (\mathbb{R}^n)^{\otimes 2} \otimes \mathbb{R}^3 \to \mathcal{Y}$ simultaneously equivariant with respect to permutations P and rotations R_{α} .

E.g.:

$$P\left(\textcircled{a},\textcircled{b}\right) = \textcircled{a}, \quad R_{\frac{\pi}{2}}\left(\textcircled{a},\textcircled{b}\right) = \textcircled{a}, \quad \text{and} \quad \Phi\left(\textcircled{a},\textcircled{b}\right) = \textcircled{a}, \quad \text{and} \quad \Phi\left(\textcircled{a},\textcircled{b}\right) = \textcircled{a}, \quad \Phi\left(\textcircled{a},\textcircled{b}\right) = \textcircled{a}, \quad \Phi\left(\textcircled{a},\textcircled{b}\right) = P \circ \Phi\left(\textcircled{a},\textcircled{b}\right) = P (\textcircled{a},\textcircled{b}) = \textcircled{a}, \quad \Phi\left(\textcircled{a},\textcircled{b}\right) = P (\textcircled{a},\textcircled{b}) = ($$

Relevant Corollaries

Non-existence Results

Geometric IGNs with non-affine point-wise activations are **trivial**.

A common mitigation strategy is to require equivariance on only a finite subset of symmetries. This approach leads to networks which are

Finite Groups of Symmetries

Let G be a **finite** set of symmetries and suppose f non-odd non-affine. Then each hidden representation is of the form $\mathbb{R}^{G/H_1} \times \cdots \times \mathbb{R}^{G/H_m}$

for a finite number of symmetry subgroups $H_i < G$.

- positive, no theoretical results are known to the authors.
- [1] T. Cohen and M. Welling. Steerable cnns. *ICLR*, 2017.
- [2] D. E. Worrall et al. Harmonic networks: Deep translation and rotation equivariance. CVPR, 2017.
- [3] H. Maron et al. Invariant and equivariant graph networks. *ICLR*, 2019.

 \downarrow paper link \downarrow

• approximately equivariant with respect to the entire group of symmetries • non-trivial and completely described by the following Corollary of Claim $2\downarrow$

Future Directions

Robustness of approximate equivariance, i.e., satisfying equivariance on a finite subset of symmetries implies bounds on $||P \circ \Phi - \Phi \circ P||$. Experimental results are

• Apply the proposed approaches to models with activations beyond real point-wise ones. E.g.: (i) complex neural networks with complex point-wise activations similar to Harmonic Networks [2] or (ii) the more general Steerable CNNs [1].

References

[4] J. Wood and John Shawe-Taylor. Representation theory and invariant neural networks. *Discrete applied mathematics*, 1996.