A Characterization Theorem for Equivariant Networks with Point-wise Activations

Marco Pacini ^{1, 2}, Xiaowen Dong ³, Bruno Lepri ², Gabriele Santin ⁴

¹ University of Trento, ² Fondazione Bruno Kessler, ³ University of Oxford, ⁴ University of Venice

↓ paper link ↓

Basics of Geometric Deep Learning

ReLU is equivariant with respect to permutation representations

Equivariant Neural Networks

Breaking Symmetry

Point-wise Activations

$$
\tilde{f}(x_1,\ldots,x_n)=(f(x_1),\ldots,f(x_n))
$$

e.g. $f = \text{ReLU}, \text{sigmoid}, \text{tanh}, \dots$

E.g.:

ReLU◦*R^π*

$$
R_{\frac{\pi}{2}}\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \text{ReLU}\left(\begin{bmatrix}-1\\0\end{bmatrix}\right) = \begin{bmatrix}0\\0\end{bmatrix}
$$

$$
= \text{LU}\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = R_{\frac{\pi}{2}}\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}-1\\0\end{bmatrix}
$$

2

R^π ◦ ReLU

Research Question

- Given specific symmetries, need to guess viable activations to design equivariant layers?
- Or manage to completely describe the following correspondence?
	- [?] (Symmetries P, Functions f) \longleftrightarrow Equivariant Activations \tilde{f} [?]

Let *G* be a finite set of symmetries and suppose *f* non-odd non-affine. Then each hidden representation is of the form $\mathbb{R}^{G/H_1}\times \cdots \times \mathbb{R}^{G/H_m}$

for a finite number of symmetry subgroups $H_i < G$.

Main Theorem

*T***-Equivariant Functions**

A function $f : \mathbb{R} \to \mathbb{R}$ is T-equivariant if

 $f(tx) = tf(x)$

for each $x \in \mathbb{R}$ and $t \in T$.

 $T = \langle 1 \rangle | T = \langle \pm 1 \rangle | T = \mathbb{R}_{>0}$ Each f | Each odd f | LeakyReLU ReLU \bullet \bullet \bullet

Claim 1 - *Informal*

Assume *f* to be **non-affine** and **continuous**. Then

 $(T$ -monomial P , T -equivariant f) \Longleftrightarrow Equivariant Activations \widetilde{f}

Claim 2 - *Informal*

Let *P* belong to a compact set of symmetries. Then, up to coordinate change, *P* is a signed-permutation matrix. If *f* is not odd, *P* is a permutation matrix.

ReLU is not equivariant with respect to rotations. Indeed ↓

Relevant Implications

Geometric Invariant Graph Networks (IGNs)

A **Geometric IGN** is a neural network $\Phi : (\mathbb{R}^n)^{\otimes 2} \otimes \mathbb{R}^3 \to \mathcal{Y}$ simultaneously equivariant with respect to **permutations** P and rotations R_{α} .

$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \text{ and } \Phi\left(\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}\right) = \square
$$

$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = P \circ \Phi\left(\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}\right) = P\left(\square\right) = \square
$$

$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = R_{\frac{\pi}{2}} \circ \Phi\left(\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}\right) = R_{\frac{\pi}{2}}\left(\square\right) = \square
$$

Examproximately equivariant with respect to the entire group of symmetries ■ non-trivial and completely described by the following Corollary of Claim 2 \downarrow

Relevant Corollaries

Non-existence Results

Geometric IGNs with non-affine point-wise activations are trivial.

A common mitigation strategy is to require equivariance on only a finite subset of symmetries. This approach leads to networks which are

-
-

Finite Groups of Symmetries

Future Directions

Robustness of approximate equivariance, i.e., satisfying equivariance on a finite subset of symmetries implies bounds on $\|P \circ \Phi - \Phi \circ P\|$. Experimental results are

 \blacktriangleright Apply the proposed approaches to models with activations beyond real point-wise ones. E.g.: (i) complex neural networks with complex point-wise activations similar to Harmonic Networks [\[2\]](#page-0-0) or (ii) the more general Steerable CNNs [\[1\]](#page-0-1).

- positive, no theoretical results are known to the authors.
-
- [1] T. Cohen and M. Welling. Steerable cnns. *ICLR*, 2017.
- [2] D. E. Worrall et al. Harmonic networks: Deep translation and rotation equivariance. *CVPR*, 2017.
- [3] H. Maron et al. Invariant and equivariant graph networks. *ICLR*, 2019.
-

References

[4] J. Wood and John Shawe-Taylor. Representation theory and invariant neural networks. *Discrete applied mathematics*, 1996.