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Equivariant Neural Networks

Idea
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Equivariance

A feature map Φ : Rn→ Rn is

equivariant with respect to P if

P ◦ Φ = Φ ◦ P

Equivariant Neural Networks

Composition

Φ = φm ◦ f̃m−1 ◦ φm−1 ◦ · · · ◦ f̃1 ◦ φ0

of equivariant linearities φi and equivariant acti-

vations f̃i

Breaking Symmetry

Point-wise Activations

f̃ (x1, . . . , xn) = (f (x1), . . . , f (xn))

e.g. f = ReLU, sigmoid, tanh, . . .

ReLU is equivariant with respect to

permutation representations

ReLU is not equivariant with respect to

rotations. Indeed ↓
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Research Question

Given specific symmetries, need to guess viable activations to design equivariant layers?

Or manage to completely describe the following correspondence?

[?] (Symmetries P , Functions f )←→ Equivariant Activations f̃ [?]

Main Theorem

T -Monomial Matrices

A T -monomial matrix has only one non-zero

element for each column and row and it lies in

T . Where T ⊆ R is a multiplicative group.

E.g.:

T = 〈1〉 T = 〈±1〉 T = R>0[
0 0 1
1 0 0
0 1 0

] [
0 0 1
1 0 0
0 −1 0

] [
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T -Equivariant Functions

A function f : R→ R is T -equivariant if

f (tx) = tf (x)
for each x ∈ R and t ∈ T .

E.g.:

T = 〈1〉 T = 〈±1〉 T = R>0

Each f Each odd f

ReLU
LeakyReLU
· · ·

Claim 1 - Informal
Assume f to be non-affine and continuous. Then

(T -monomial P , T -equivariant f )⇐⇒ Equivariant Activations f̃

Claim 2 - Informal

Let P belong to a compact set of symmetries. Then, up to coordinate change, P is a

signed-permutation matrix. If f is not odd, P is a permutation matrix.

Relevant Implications

Geometric Invariant Graph Networks (IGNs)

A Geometric IGN is a neural network Φ : (Rn)⊗2 ⊗ R3→ Y
simultaneously equivariant with respect to permutations P and rotations Rα.
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Relevant Corollaries

Non-existence Results

Geometric IGNs with non-affine point-wise activations are trivial.

A common mitigation strategy is to require equivariance on only a finite subset of

symmetries. This approach leads to networks which are

approximately equivariant with respect to the entire group of symmetries

non-trivial and completely described by the following Corollary of Claim 2 ↓

Finite Groups of Symmetries

Let G be a finite set of symmetries and suppose f non-odd non-affine. Then

each hidden representation is of the form

RG/H1× · · · × RG/Hm

for a finite number of symmetry subgroups Hi < G.

Future Directions

Robustness of approximate equivariance, i.e., satisfying equivariance on a finite

subset of symmetries implies bounds on ‖P ◦ Φ− Φ ◦ P‖. Experimental results are

positive, no theoretical results are known to the authors.

Apply the proposed approaches to models with activations beyond real point-wise

ones. E.g.: (i) complex neural networks with complex point-wise activations similar

to Harmonic Networks [2] or (ii) the more general Steerable CNNs [1].
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